• Title/Summary/Keyword: Thermal Treatment

검색결과 2,727건 처리시간 0.105초

Conversion of Shoot Waste of Fast-Growing Teak into Activated Carbon and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Raka Dzikri NURULLAH;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권5호
    • /
    • pp.488-503
    • /
    • 2024
  • Shoot waste refers to the parts of trees that are not yet optimally utilized. In this study, we aimed to utilize shoot waste of fast-growing teak (FGT) extracted from the community forest in Wonosari, Gunungkidul, Yogyakarta Special Region, Indonesia by converting it into charcoal, followed by further conversion into activated carbon. This study was conducted with two treatment factors of the activation process, including thermal treatment (750℃, 850℃, and 950℃) and heating period (30, 60, and 90 min), to determine the best condition for the activation process. Our results indicated a significantly effect of the interaction between thermal treatment and heating period on the moisture content, volatile matter content, ash content, fixed carbon content, and adsorption properties of the produced activated carbon. The highest iodine adsorption capacity of activated carbon is 1,102.57 mg/g, which was produced by thermal treatment at 750℃ and heating period of 30 min. This result fulfilled the Indonesian National Standard (SNI 06-3730-1995 quality standard). Furthermore, the quality parameters of the produced activated carbon include: moisture content of 6.13%; volatile matter content of 17.27%; ash content 5.24%; fixed carbon content of 77.49%; benzene removal efficiency of 8.43%; and methylene blue adsorption capacity of 69.66 mg/g. Based on this study, we concluded that shoot waste of FGT could be classified as a prospective material for developing activated carbon for industrial application.

용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성 (Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics)

  • 안석환;최문오;김성광;손창석;남기우
    • 한국해양공학회지
    • /
    • 제21권5호
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

Effect of Thermal Treatment on the Performance and Nanostructures in Polymer Solar Cells with PTB7-Th:PC71BM Bulk Heterojunction Layers

  • Lee, Sooyong;Seo, Jooyeok;Jeong, Jaehoon;Lee, Chulyeon;Song, Myeonghun;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제5권3호
    • /
    • pp.69-74
    • /
    • 2017
  • Here we report the influence of thermal treatment on the performance of high efficiency polymer solar cells with the bulk heterojunction films of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl $C_{71}$ butyric acid methyl ester ($PC_{71}BM$). The crystalline nanostructure of PTB7-Th:$PC_{71}BM$ layers, which were annealed at three different temperatures, was investigated by employing synchrotron radiation grazing incidence X-ray diffraction (GIXD) technique. Results showed that the device performance was slightly reduced by thermal annealing at $50^{\circ}C$ but became significantly poor by thermal annealing at $100^{\circ}C$. The poor device performance by thermal annealing was attributed to the collapse in the crystalline nanostructure of PTB7-Th in the PTB7-Th:$PC_{71}BM$ layers as evidenced by the GIXD measurements that exhibited huge reduction in the intensity of PTB7-Th (100) peak even at $50^{\circ}C$.

전기방사법과 이원화 열처리 공정을 통한 은 나노섬유의 합성 및 투명전극으로의 응용 (Synthesis of Silver Nanofibers Via an Electrospinning Process and Two-Step Sequential Thermal Treatment and Their Application to Transparent Conductive Electrodes)

  • 이영인;좌용호
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.562-568
    • /
    • 2012
  • Metal nanowires can be coated on various substrates to create transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these metal nanowire based transparent conductive films is that the resistance between the nanowires is still high because of their low aspect ratio. Here, we demonstrate high-performance transparent conductive films with silver nanofiber networks synthesized by a low-cost and scalable electrospinning process followed by two-step sequential thermal treatments. First, the PVP/$AgNO_3$ precursor nanofibers, which have an average diameter of 208 nm and are several thousands of micrometers in length, were synthesized by the electrospinning process. The thermal behavior and the phase and morphology evolution in the thermal treatment processes were systematically investigated to determine the thermal treatment atmosphere and temperature. PVP/$AgNO_3$ nanofibers were transformed stepwise into PVP/Ag and Ag nanofibers by two-step sequential thermal treatments (i.e., $150^{\circ}C$ in $H_2$ for 0.5 h and $300^{\circ}C$ in Ar for 3 h); however, the fibrous shape was perfectly maintained. The silver nanofibers have ultrahigh aspect ratios of up to 10000 and a small average diameter of 142 nm; they also have fused crossing points with ultra-low junction resistances, which result in high transmittance at low sheet resistance.

촉매 금속을 이용한 열화학 기상 증착법에서 탄소 나노튜브의 수직배향 합성에 대한 암모니아의 역할 (Effect of Ammonia on Alignment of Carbon Nanotubes in Thermal Chemical Vapor Deposition)

  • 홍상영;조유석;최규석;김도진;김효진
    • 한국재료학회지
    • /
    • 제11권8호
    • /
    • pp.697-702
    • /
    • 2001
  • 열화학 기상 증착법을 이용하여 암모니아 처리에 따른 촉매 금속의 표면형태와 탄소 나노튜브의 성장을 조사하였다. 암모니아 처리의 열화학 과정의 조절에 의해 고르게 분산된 수직 성장된 탄소 나노튜브를 얻었다. 탄소 나노튜브 합성시 암모니아처리는 수직성장 및 고밀도 성장에 중요한 과정으로 그 역할에 대해 알아보았다. 고밀도의 수직 배향된 탄소나노튜브의 구조와 형태는 주사전자 현미경과 투과전자 현미경, 라만을 이용하여 관찰하였다.

  • PDF

PCB 기판용 FRP 재료의 열화특성 (Degradation characteristics of the FRP material for using as a PCB substrate)

  • 박종관
    • 대한전자공학회논문지SD
    • /
    • 제41권12호
    • /
    • pp.1-6
    • /
    • 2004
  • 본 연구는 PCB 기판용 FRP 재료의 열화현상을 규명하기 위하여 열 및 방전에 의한 열화를 각각 모의하여 표면에서의 화학적, 정전적 상관관계를 조사하였다. 열 처리에 따른 시료의 특성변화는 $200^{\circ}C$ 까지는 표면의 소수화로 인하여 접촉각 및 표면전위가 증가하였다. XPS에 의한 분석결과 열처리에 따라 표면측쇄상 산소기의 이탈과 탄소쇄의 불포화 이중결합의 증가로 처리시료에서는 소수성이 증가하였다. 또한 열처리로 인해 착색현상이 발생되었고, 이러한 현상은 ether기에 의해 발생된다는 것을 확인하였다. 방전 처리된 시료의 접촉각 및 표면전위는 표면에 카르복실기 라디칼을 포함하는 다량의 측쇄화가 집중적으로 발생되어 처리시간에 따라 급격한 친수화가 진행되었다.

ReMnO3(Re:Ho, Er) 박막의 강유전성에 미치는 열처리 공정의 영향 (Effects of Thermal Heat Treatment Process on the Ferroelectric Properties of ReMnO3 (Re:Ho, Er) Thin Films)

  • 김응수;채정훈
    • 한국세라믹학회지
    • /
    • 제42권11호
    • /
    • pp.763-769
    • /
    • 2005
  • Ferroelectric $ReMnO_3$(Re:Ho, Er) thin films were deposited on Si(100) substrate by Metal-Organic Chemical Vapor Deposition (MOCVD). Crystallinity and electric properties of $ReMnO_3$(Re:Ho, Er) thin films were investigated as a function of thermal heat treatment process, CHP (Conventional Heat-treatment Process) and RTP (Rapid Thermal Process). $ReMnO_3$(Re:Ho, Er) thin films prepared by RTP showed higher c-axis preferred orientation and homogeneous surface roughness than those prepared by CHP. The remnant polarization of ferroelectric hysteresis loop of $ReMnO_3$(Re:Ho, Er) thin films was strongly dependent on the c­axis preferred orientation of hexagonal single phase, and the leakage current characteristics of thin films were dependent on the homogeneity of grain size as well as surface roughness of thin films.

Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment

  • Kim, Kyungbae;Kim, Han-Seul;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2020
  • An efficient wet process approach to modifying natural graphite (NG) electrodes for Li-ion batteries is introduced in this paper. With homogeneous mixing and thermal decomposition of NG with diammonium phosphate ((NH4)2HPO4), phosphorus and nitrogen were successfully incorporated into the surface layer of NG particles. Electron microscopy and X-ray photoelectron spectroscopy analyses demonstrated that the surface was well modified by this process. As a result, the treated NG electrodes exhibited much improved electrochemical performance over pristine NG at two different temperatures: 25 ℃ and 50 ℃. Excellent capacity retention of 95.6% was obtained after 100 cycles at 50 ℃. These enhanced properties were confirmed in a morphology analysis on the cross-sections of the NG electrodes after galvanostatic cycling. The improved cycle and thermal stabilities can be attributed to the surface treatment with phosphorus and nitrogen; the treatment formed a stable solid electrolyte interphase layer that performed well when undergoing Li insertion and extraction cycling.

양이온성 계면활성제를 이용한 수산화인회석 합성 (Synthesis of Hydroxyapatite Using a Cationic Surfactant)

  • 이근영;권기영
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.639-642
    • /
    • 2019
  • 본 연구에서는 침전법을 이용하여 양이온성 계면활성제인 hexadecyltrimethylammonium chloride (CTAC)를 도입한 수산화인회석을 합성하였다. X-선 회절 분석법과 투과전자현미경, 비표면적 분석기를 이용하여 수산화인회석과 CTAC을 도입한 수산화인회석의 결정성, 형태, 비표면적을 분석하였다. 열처리 후, HAP와 CTAC-HAP는 열처리 전과 비교하여 비표면적이 감소하였다. 또한 열처리는 뾰족한 막대 모양에서 종횡비가 감소한 둥근 모양으로의 CTAC-HAP의 형태변화를 유도하였다. 이러한 형태의 변화는 순수한 HAP에서도 관찰되었다. 그러므로 형태 변화와 열처리 후의 비표면적 감소는 열처리 중 CTAC의 제거로 생성된 기공들이 형태 변화로 인해 유지되지 않는 것으로 판단된다.

Chemical, Mechanical, Thermal, and Colorimetric Features of the Thermally Treated Eucalyptus grandis Wood Planted in Brazil

  • SCHULZ, Henrique Romer;ACOSTA, Andrey Pereira;BARBOSA, Kelvin Techera;JUNIOR, Mario Antonio Pinto da Silva;GALLIO, Ezequiel;DELUCIS, Rafael de Avila;GATTO, Darci Alberto
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권3호
    • /
    • pp.226-233
    • /
    • 2021
  • This article aimed at thermally treating and charactering the Eucalyptus grandis wood under three different temperatures. For this, pristine eucalypt samples were treated by heating in a laboratory oven at 160 ℃, 200 ℃ and 240 ℃, always for 2 h. Treatment parameters (based on weight percentage loss and specific gravity), as well as mechanical (by hardness tests), chemical (by infrared spectroscopy), thermal (by thermogravimetry), and colorimetric (by CIELab method) features were evaluated. Compared to the pristine ones, the treated woods have there was a drop in apparent density at 12 % and consecutively greater thermal stability which is probably related to a previous partial degradation of some major amorphous components (namely cellulose, hemicellulose and lignin), as suggested by the treatment parameters and infrared spectra. Besides of that, the higher the temperature treatment, the higher the loss in surface hardness and the higher the colour darkening.