Browse > Article
http://dx.doi.org/10.5658/WOOD.2021.49.3.226

Chemical, Mechanical, Thermal, and Colorimetric Features of the Thermally Treated Eucalyptus grandis Wood Planted in Brazil  

SCHULZ, Henrique Romer (Materials Science and Engineering, Federal University of Pelotas)
ACOSTA, Andrey Pereira (Mining, Metallurgical and Materials Engineering, Federal University of Rio Grande Do Sul)
BARBOSA, Kelvin Techera (Materials Science and Engineering, Federal University of Pelotas)
JUNIOR, Mario Antonio Pinto da Silva (Materials Science and Engineering, Federal University of Pelotas)
GALLIO, Ezequiel (Materials Science and Engineering, Federal University of Pelotas)
DELUCIS, Rafael de Avila (Materials Science and Engineering, Federal University of Pelotas)
GATTO, Darci Alberto (Materials Science and Engineering, Federal University of Pelotas)
Publication Information
Journal of the Korean Wood Science and Technology / v.49, no.3, 2021 , pp. 226-233 More about this Journal
Abstract
This article aimed at thermally treating and charactering the Eucalyptus grandis wood under three different temperatures. For this, pristine eucalypt samples were treated by heating in a laboratory oven at 160 ℃, 200 ℃ and 240 ℃, always for 2 h. Treatment parameters (based on weight percentage loss and specific gravity), as well as mechanical (by hardness tests), chemical (by infrared spectroscopy), thermal (by thermogravimetry), and colorimetric (by CIELab method) features were evaluated. Compared to the pristine ones, the treated woods have there was a drop in apparent density at 12 % and consecutively greater thermal stability which is probably related to a previous partial degradation of some major amorphous components (namely cellulose, hemicellulose and lignin), as suggested by the treatment parameters and infrared spectra. Besides of that, the higher the temperature treatment, the higher the loss in surface hardness and the higher the colour darkening.
Keywords
heat treatment; wood modification; hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Poubel, D.D.S., Garcia, R.A., Santos, W.A.D., Oliveira, G.D.L., Abreu, H.D.S. 2013. Efeito da termorretificacao nas propriedades fisicas e quimicas da madeira de Pinus caribaea. Cerne 19(3): 391-398.   DOI
2 Priadi, T., Orfian, G., Cahyono, T.D., Iswanto, A.H. 2020. Dimensional Stability, Color Change, and Durability of Boron-MMA Treated Red Jabon (Antochephalus macrophyllus) Wood. Journal of the Korean Wood Science and Technology 48(3): 315-325.   DOI
3 Pinto, E.M., Machado, G.D.O., Felipetto, R.P.F., Christoforo, A.L., Lahr, F.A.R., Calil Jr, C. 2016. Thermal degradation and charring rate of and wood species. The Open Construction & Building Technology Journal 10(1): 450-456.
4 Poletto, A.J., Zattera, M.M.C., Santana, H. 2012. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology 109(148): 148-153.   DOI
5 Acosta, A.P., Beltrame, R., Missio, A.L., de Avila Delucis, R., Gatto, D.A. 2020. Juvenile and mature woods from pine subjected to in situ polymerization with furfuryl alcohol. Wood Material Science & Engineering 1-6. doi:10.1080/17480272.2020.1810118.   DOI
6 He, Z., Wang, Z., Qu, L., Qian, J., Yi, S. 2019. Modeling and simulation of heat-mass transfer and its application in wood thermal modification. Results in Physics 13(10): 2213.
7 Herrera, R., Arrese, A., Pedro Martinez, P.H., Labidi, J., Ponte, R.L. 2018. Evolution of thermally modified wood properties exposed to natural and artificial weathering and its potential as an element for facades systems. Construction and Building Materials 172: 233-242.   DOI
8 Zhang, Y., Liu, X., Apostolidis, P., Gard, W., van de Ven, M., Erkens, S., Jing, R. 2019. Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen. Materials 12(24): 4176.   DOI
9 IBA, 2019. Brazilian Tree Industry: Report 2019. Sao Paulo, Brazil, 80.
10 IBGE, 2019. The Brazilian Institute of Geography and Statistics (in portuguese). URL: https://sidra.ibge.gov.br/pesquisa/pevs/tabelas. Accessed 27 Nov 2020.
11 Kang, C.-W., Li, C., Jang, E.-S., Jang, S.-S., Kang, H.-Y. 2018. Changes in Sound Absorption Capability and Air Permeability of Malas (Homalium foetidum) Specimens after High Temperature Heat Treatment. Journal of Korean Wood Science and Technology 46(2): 149-154.   DOI
12 Romagnoli, M., Segoloni, E., Luna, M., Margaritelli, A., Gatti, M., Santamaria, U., Vinciguerra, V. 2013. Wood colour in Lapacho (Tabebuia serratifolia): chemical composition and industrial implications. Wood Sciense Technology 47(4): 701-716.   DOI
13 Korkut, S., Akgul, M., Dundar, T. 2008. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology 99(6): 1861-1868.   DOI
14 Moura, L.F., Brito, J.O. 2011. Efeito da termorretifcacao sobre as propriedades colorimetricas das madeiras de Eucalyptus grandis e Pinus caribaea var. hondurensis. Scientia Forestalis 39(89): 69-76.
15 Modes, K.S., Santini, E.J., Vivian, M.A., Haselein, M.A. 2017. Efeito da termorretificacao nas propriedades mecanicas das madeiras de Pinus taeda e Eucalyptus grandis. Ciencia Florestal 27(1): 291-302.   DOI
16 Hubbard, R.M., Stape, J., Ryan, M.G., Almeida, A.C., Rojas, J. 2010. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management 259(9): 1714-1721.   DOI
17 ASTM International. 2014. D 143-94: Standard methods of testing small clear specimens of timber. West Conshohocken, PA, USA. Acess in: https://www.astm.org/DATABASE.CART/HISTORICAL/D143-94.htm.
18 Cademartori, P.H.G., Missio, A.L., Mattos, B.D., Schneid, E., Gatto, D.A. 2014. Physical and mechanical properties and colour changes of fast-growing Gympie messmate wood subjected to two-step steam-heat treatments. Wood Materials Science and Engineer 9(1): 40-48.   DOI
19 Chang, Y.-S., Han, Y., Eon, C.-D., Chun, S., Yeo, H. 2019. Hygroscopic Property of Heat Treated Yellow Poplar (Liriodendron tulipifera) Wood. Journal of the Korean Wood Science and Technology 47(6): 761-769.   DOI
20 Delucis, R.D.A., Gatto, D.A., Cademartori, P.H.G.D., Missio, A.L., Schneid, E. 2014. Propriedades fisicas da madeira termorretificada de quatro folhosas. Florestas e Ambiente 21(1): 99-107.   DOI
21 Gallio, E., Zanatta, P., Ribes, D.D., Lazarotto, M., Gatto, D.A., Beltrame, R. 2018. Fourier transform infrared spectroscopy in treated woods deteriorated by a white rot fungus. Maderas-Ciencia Tecnologia 20(3): 479-488.
22 Gallio, E., Zanatta, P., Cruz, N.D., Zanol, G.S., Schulz, H.R., Gatto, D.A. 2019. Influencia dos tratamentos de termorretificacao e furfurilacao em propriedades tecnologicas de uma conifera. Revista Materia Rio de Janeiro 24(3): e12424.   DOI
23 Gunduz, G., Aydemir, D., Karakas, G. 2009. The effects of thermal treatment on the mechanical properties of wild Pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Materials & Design 30(10): 4391-4395.   DOI
24 Gunduz, G., Korkut, S., Korkut, D.S. 2008. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresource technology 99(7): 2275-2280.   DOI
25 Kang, C.-W., Jang, E.-S., Jang, S.-S., Cho, J.-I., Kim, N.-H. 2019. Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood. Journal of Korean Wood Science and Technology 47(5): 644-654.   DOI
26 Kim, J.Y., Hwang, H.S., Kim Y.S., Kim, U.J., Choi, J.W. 2014. Investigation of structural modification and thermal characteristics of lignin after heat treatment. International Journal of Biological Macromolecules 66: 57-65.   DOI
27 Kim, Y.K., Kwon, G.J., Kim, A.R., Lee H.S., Purusatama, B., Lee, S.H., Kang, C.W., Kim N.H. 2018. Effects of Heat Treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) Wood Grown in Korea. Journal of Korean Wood Science and Technology 46(5): 511-526.   DOI
28 Park, Y., Jeon, W.-S., Yoon, S.-M., Lee, H.M., Hwang, W.-J. 2020. Evaluation of Cell-Wall Microstructure and Anti-Swelling Effectiveness of Heat-Treated Larch Wood. Journal of the Korean Wood Science and Technology 48(6): 780-790.   DOI
29 Pincelli, A.L.P.S.M., Moura L.F., Brito, J.O. 2012. Effect of thermal rectification on colors of Eucalyptus saligna and Pinus caribaea woods. Maderas. Ciencia y Tecnologia 14(2): 239-248.   DOI
30 Lee, J.M., Lee, W.H. 2018. Dimensional Stabilization through Heat Treatment of Thermally Compressed Wood of Korean Pine. Journal of the Korean Wood Science and Technology 46(5): 471-485.   DOI
31 Zanuncio, A., Farias, E., Alves, S.T. 2014. Termorretificacao e Colorimetria da Madeira de Eucalyptus grandis. Floresta e Ambiente 21(1): 85-90.   DOI
32 Corleto, R., Gaff, M., Niemz, P., Sethy, A.K., Todaro, L., Ditommaso, G., Macku, J. 2020. Effect of thermal modification on properties and milling behaviour of African padauk (Pterocarpus soyauxii Taub.) wood. Journal of Materials Research and Technology 9(4): 9315-9327.   DOI
33 Missio, A.L., Mattos, B.D., Gatto, D.A., De Lima, E.A. 2014. Thermal analysis of charcoal from fast-growing eucalypt wood: Influence of raw material moisture content. Journal of Wood Chemistry and Technology 34(3): 191-201.   DOI
34 ASTM International. 2014. D 2017-05: Standard test method of accelerated laboratory test of natural decay resistance of wood. West Conshohocken, PA, USA. Acess in: https://www.astm.org/DATABASE.CART/WITHDRAWN/D2017.htm.