Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.1.31

Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment  

Kim, Kyungbae (School of Materials Science and Engineering, Kookmin University)
Kim, Han-Seul (School of Materials Science and Engineering, Kookmin University)
Seo, Hyungeun (School of Materials Science and Engineering, Kookmin University)
Kim, Jae-Hun (School of Materials Science and Engineering, Kookmin University)
Publication Information
Corrosion Science and Technology / v.19, no.1, 2020 , pp. 31-36 More about this Journal
Abstract
An efficient wet process approach to modifying natural graphite (NG) electrodes for Li-ion batteries is introduced in this paper. With homogeneous mixing and thermal decomposition of NG with diammonium phosphate ((NH4)2HPO4), phosphorus and nitrogen were successfully incorporated into the surface layer of NG particles. Electron microscopy and X-ray photoelectron spectroscopy analyses demonstrated that the surface was well modified by this process. As a result, the treated NG electrodes exhibited much improved electrochemical performance over pristine NG at two different temperatures: 25 ℃ and 50 ℃. Excellent capacity retention of 95.6% was obtained after 100 cycles at 50 ℃. These enhanced properties were confirmed in a morphology analysis on the cross-sections of the NG electrodes after galvanostatic cycling. The improved cycle and thermal stabilities can be attributed to the surface treatment with phosphorus and nitrogen; the treatment formed a stable solid electrolyte interphase layer that performed well when undergoing Li insertion and extraction cycling.
Keywords
Natural graphite; Surface treatment; Phosphorus and nitrogen incorporation; Solid electrolyte interphase; Lithium battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Mater. Today, 18, 252 (2015).   DOI
2 M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Carbon, 38, 183 (2000).   DOI
3 J. M. Tarascon and M. Armand, Nature, 414, 359 (2001).   DOI
4 P. Verma, P. Maire, and P. Novak, Electrochim. Acta, 55, 6332 (2010).   DOI
5 N. A. Kaskhedikar and J. Maier, Adv. Mater. 21, 2664 (2009).   DOI
6 S. Flandrois and B. Simon, Carbon, 37, 165 (1999).   DOI
7 Y. P. Wu, E. Rahm, and R. Holze, J. Power Sources, 114, 228 (2003).   DOI
8 C. Wang, A. J. Appleby, and F. E. Little, J. Electroanal. Chem., 497, 33 (2001).   DOI
9 T. Waldmann, M. Wilka, M. Kaper, M. Fleischhammer, and M. Wohlfahrt-Mehrens, J. Power Sources, 262, 129 (2014).   DOI
10 J.-I. Yamaki, H. Takatsuji, T. Kawamura, and M. Egashira, Solid State Ionics, 148, 241 (2002).   DOI
11 J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai, and W.-K. Yuan, Carbon, 45, 785 (2007),   DOI
12 A. M. Andersson, D. P. Abraham, R. Haasch, S. MacLaren, J. Liu, and K. Amine, J. Electrochem. Soc., 149, A1358 (2002).   DOI
13 H. Park, T. Yoon, J. Mun, J. H. Ryu, J. J. Kim, and S. M. Oh, J. Electrochem. Soc., 160, A1539 (2013).   DOI
14 J. Xu, I. -Y. Jeon, J. Ma, Y. Dou, S. -J. Kim, J. -M. Seo, H. Liu, S. Dou, J. -B. Baek, and L. Dai, Nano Res., 10, 1268 (2016).
15 Z. Yu, J. Song, M. L. Gordin, R. Yi, D. Tang, and D. Wang, Adv. Sci., 2, 1400020 (2015).   DOI
16 A. M. Puziy, O. I. Poddubnaya, R. P. Socha, J. Gurgul, and M. Wisniewski, Carbon, 46, 2113 (2008).   DOI
17 C.-M. Park and H.-J. Sohn, Adv. Mater. 19, 2465 (2007).   DOI
18 A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007).   DOI
19 M.-S. Park, J.-H. Kim, Y.-N. Jo, S.-H. Oh, H. Kim, and Y.-J. Kim, J. Mater. Chem., 21, 17960 (2011).   DOI
20 D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett., 9, 1752-1758 (2009).   DOI
21 H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui, J. Mater. Chem., 21, 5430 (2011).   DOI
22 H. Yang, H. Bang, K. Amine, and J. Prakash, J. Electrochem. Soc., 152, A73 (2005).   DOI