Browse > Article
http://dx.doi.org/10.21218/CPR.2017.5.3.069

Effect of Thermal Treatment on the Performance and Nanostructures in Polymer Solar Cells with PTB7-Th:PC71BM Bulk Heterojunction Layers  

Lee, Sooyong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Seo, Jooyeok (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Jeong, Jaehoon (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Lee, Chulyeon (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Song, Myeonghun (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Kim, Hwajeong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Kim, Youngkyoo (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
Publication Information
Current Photovoltaic Research / v.5, no.3, 2017 , pp. 69-74 More about this Journal
Abstract
Here we report the influence of thermal treatment on the performance of high efficiency polymer solar cells with the bulk heterojunction films of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl $C_{71}$ butyric acid methyl ester ($PC_{71}BM$). The crystalline nanostructure of PTB7-Th:$PC_{71}BM$ layers, which were annealed at three different temperatures, was investigated by employing synchrotron radiation grazing incidence X-ray diffraction (GIXD) technique. Results showed that the device performance was slightly reduced by thermal annealing at $50^{\circ}C$ but became significantly poor by thermal annealing at $100^{\circ}C$. The poor device performance by thermal annealing was attributed to the collapse in the crystalline nanostructure of PTB7-Th in the PTB7-Th:$PC_{71}BM$ layers as evidenced by the GIXD measurements that exhibited huge reduction in the intensity of PTB7-Th (100) peak even at $50^{\circ}C$.
Keywords
Polymer solar cells; PTB7-Th; Synchrotron; GIXD; Thermal treatment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, Y., Choulis, S. A., Nelson, J., Bradley, D. D. C., Cook, S., and Durrant, J. R., "Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene", Appl. Phys. Lett., Vol. 86, pp. 063502, 2005.   DOI
2 Deng, Y., Liu, J., Wang, J., Liu, L., Li, W., Tian, H., Zhang, X., Xie, Z., Geng, Y., and Wang, F., "Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells", Adv. Mater. Vol. 26, No. 3, pp. 471-476, 2014.   DOI
3 Reyes-Reyes, M., Kim, K., and Carroll, D. L., "High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)$C_{61}$ blends", Appl. Phys. Lett., Vol. 87, pp. 083506, 2005.   DOI
4 Liao, S., Jhuo, H., and Cheng, Y., "Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance", Adv. Mater., Vol. 25, No. 34, pp. 4766-4771, 2013.   DOI
5 Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherz, T., and Hummelen, J. C., "2.5% efficient organic plastic solar cells", Appl. Phys. Lett., Vol. 78, pp. 841, 2001.   DOI
6 Guo, X., Zhou, N., Lou, S. J., Smith, J., Tice, D. B., Hennek, J. W., Ortiz, R. P., Navarrete, J. T. L., Li, S., Strzalka, J., Chen, L. X., Chang, R. P. H., Facchetti, A., and Marks, T. J., "Polymer solar cells with enhanced fill factors", Nat. Photonics, Vol. 7, pp. 825-833, 2013.   DOI
7 Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. D. C., Giles, M., McCulloch, I., Ha, C. S., and Ree, M., "A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells", Nat. Mater., Vol. 5, pp. 197-203, 2006.   DOI
8 Wang, Y., Xu, W., Zhang, J., Zhou, L., Lei, Gang, Liu, C., Lai, W., and Huang, W., "A small molecule/fullerene binary acceptor system for high-performance polymer solar cells with enhanced light-harvesting properties and balanced carrier mobility", J. Mater. Chem. A, Vol. 5, pp. 2460-2465, 2017.   DOI
9 Shin, M., Kim, H., Park, J., Nam, S., Heo, K., Ree, M., Ha, C. S., and Kim, Y., "Abrupt morphology change upon thermal annealing in poly(3-hexylthiophene)/soluble fullerene blend films for polymer solar cells", Adv. Funct. Mater., Vol. 20, No. 5, pp. 748-754, 2010.   DOI
10 Foster, S., Deledalle, F., Mitani, A., Kimura, T., Kim, K., Okachi, T., Kirchartz, T., Oguma, J., Durrant, J. R., Doi, S., and Nelson, J., "Electron collection as a limit to polymer:PCBM solar cell efficiency: effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM", Adv. Energy Mater., Vol. 4, No. 14, pp. 1400311, 2014.   DOI
11 Nam, S., Park, S., Kim, H., Lee, J., and Kim, Y., "Strong addition effect of charge-bridging polymer in polymer:fullerene solar cells with low fullerene content", RSC Adv., Vol. 4, pp. 24914-24921, 2014.   DOI
12 Shin, M., Kim, H, Nam, S., Park, J., and Kim, Y., "Influence of hole-transporting material addition on the performance of polymer solar cells", Energy Environ. Sci., Vol. 3, pp. 1538-1543, 2010.   DOI
13 Pranculis, V., Ruseckas, A., Vithanage, D. A., Hedley, G. J., Samuel, I. D. W., and Gulbinas, V., "Influence of blend ratio and processing additive on free carrier yield and mobility in PTB7: $PC_{71}BM$ photovoltaic solar cells", J. Phys. Chem. C, Vol. 120, No. 18, pp. 9588-9594, 2016.   DOI
14 Han, H., Lee, H., Nam, S., Jeong, J., Lee, I., Kim, H., Ha, C. S., and Kim, Y., "Poly(3-hexylthiophene-co-benzothiadiazole)(THBT) as an electron- accepting polymer for normal and inverted type all-polymer solar cells", Polym. Chem., Vol. 4, pp. 2053-2061, 2013.   DOI
15 Facchetti, A., "Polymer donor-polymer acceptor (all-polymer) solar cells", Mater. Today, Vol. 16, No. 4, pp. 123-132, 2013.   DOI
16 Ameri, T., Lia, N., and Brabec, C. J., "Highly efficient organic tandem solar cells: a follow up review", Energy Environ. Sci., Vol. 6, pp. 2390-2413, 2013.   DOI
17 Lu, L. and Yu, L., "Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it", Adv. Mater., Vol. 26, pp. 4413-4430, 2014.   DOI
18 Kim, K., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H., and Kim, Y., "Organic solar cells based on conjugated polymers: history and recent advances", Korean J. Chem. Eng., Vol. 31, No. 7, pp. 1095-1104, 2014.   DOI
19 Krebs, F. C., "Fabrication and processing of polymer solar cells: a review of printing and coating techniques", Sol. Energy Mater. Sol. Cell., Vol. 93, No. 4, pp. 394-412, 2009.   DOI
20 Nam, S., Seo, J., Han, H., Kim, H., Hahm, S. G., Ree, M., Gal, Y., Anthopoulos, T. D., Bradlet, D. D. C., and Kim, Y., ">10% efficiency polymer: fullerene solar cells with polyacetylene-based polyelectrolyte interlayers", Adv. Mater. Interfaces, Vol. 3, No. 23, pp. 1600415, 2016.   DOI
21 Krebs, F. C., Gevorgyan, S. A., and Alstrup, J., "A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies", J. Mater. Chem., Vol. 19, pp. 5442-5451, 2009.   DOI
22 Lee, S., Kim, H., and Kim, Y., "Influence of physical load on the stability of organic solar cells with polymer:fullerene bulk heterojunction nano layers", Curr. Photovoltaic Res., Vol. 4, No. 2, pp. 48-53, 2016.   DOI
23 Sondergaard, R., Hosel, M., Angmo, D., Larsen-Olsen, T. T., and Krebs, F. C., "Roll-to-roll fabrication of polymer solar cells", Mater. Today, Vol. 15, No. 1, pp. 36-49, 2012.   DOI
24 Blankenburg, L., Schultheis, K., Schache, H., Sensfuss, S., and Schronder, M., "Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells", Sol. Energy Mater. Sol. Cell., Vol. 93, No. 4, pp. 476-483, 2009.   DOI
25 Nam, S., Seo, J., Woo, S., Kim, W., Kim, H., Bradley, D. D. C., and Kim, Y., "Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electroncollecting buffer layers", Nat. Commun., Vol. 6, pp. 8929, 2015.   DOI
26 Jeong, J., Seo, J., Nam, S., Han, H., Kim, H., Anthopoulos, T. D., Bradley, D. D. C., and Kim, Y., "Significant stability enhancement in high- efficiency polymer:fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light", Adv. Sci., Vol. 3, No. 4, pp. 1500269, 2016.   DOI
27 Nam, S., Park, S., Seo, J., Jeong, J., Lee, S., Kim, J., Kim, H., and Kim, Y., "Influence of annealing temperature on the nanostructure and performance of polymer: Polymer solar cells", J. Korean Phys. Soc., Vol. 63, No. 7, pp. 1368-1372, 2013.   DOI
28 Roehling, J. D., Baran, D., Sit, J., Kassar, T., Ameri, T., Unruh, T., Barbec, C. J., and Moule, A. J., "Nanoscale morphology of PTB7 based organic photovoltaics as function of fullerene size", Sci. Rep., Vol. 6, pp. 30915, 2016.   DOI
29 Nam, S., Hahm, S. G., Han, H., Seo, J., Kim, C., Kim, H., Marder, S. R., Ree, M., and Kim, Y., "All-polymer solar cells with bulk hetero -junction films containing electron-accepting triple bondconjugated perylene diimide polymer", ACS Sustainable Chem. Eng., Vol. 4, No. 3, pp. 767-774, 2016.   DOI
30 Wan, Q., Guo, X., Wang, Z., Li, W., Guo, B., Ma, W., Zhang, M., and Li, Y., "10.8% efficiency polymer solar cells based on PTB7-Th and $PC_{71}BM$ via binary solvent additives treatment", Adv. Funct. Mater., Vol. 26, No. 36, pp. 6635-6640, 2016.   DOI
31 Woo, S., Kim, W., Kim, H., Yi, Y., Lyu, H., and Kim, Y., "8.9% single-stack inverted polymer solar cells with electron-rich polymer nanolayer modified inorganic electron-collecting buffer layers", Adv. Energy Mater., Vol. 4, No. 7, pp. 1301692, 2014.   DOI
32 Darling, S. B. and You, F., "The case for organic photovoltaics", RSC Adv., Vol. 3, pp. 17633-17648, 2013.   DOI
33 Heeger, A. J., "25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation", Adv. Mater., Vol. 26, No. 1, pp. 10-28, 2014.   DOI
34 Yan, J. and Saunders, B. R., "Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells", RSC Adv., Vol. 4, pp. 43286-43314, 2014.   DOI
35 Wang, N., Chen, Z., Wei, W., and Jiang, Z., "Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments", J. Am. Chem. Soc., Vol. 135, No. 45, pp. 17060-17068, 2013.   DOI
36 Padinger, F., Rittberger, R. S., and Sariciftci, N. S., "Effects of postproduction treatment on plastic solar cells", Adv. Funct. Mater., Vol. 13, No. 1, pp. 85-88, 2003.   DOI
37 Nguyen, T. L., Choi, H., Ko, S., Uddin, M. A., Walker, B., Yum, S., Jeong, J., Yun, M. H., Shin, T. J., Hwang, S., Kim, J. Y., Woo, H. Y., "Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a -300 nm thick conventional single-cell device", Energy Enviorn. Sci., Vol. 7, pp. 3040-3051, 2014.   DOI
38 Zhang, M., Gu, Y., Guo, X., Liu, F., Zhang, S., Huo, L., Russell, T. P., and Hou, J., "Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%", Adv. Mater., Vol. 25, No. 35, pp. 4944-4949, 2013.   DOI
39 Peters, C. H., Sachs-Quintana, I. T., Mateker, W. R., Heumueller, T., Rivnay, J., Noriega, R., Beiley, Z. M., Hoke, E. T., Salleo, A., and McGehee, M. D., "The mechanism of burn-in loss in a high efficiency polymer solar cell", Adv. Mater., Vol. 24, No. 5, pp. 663-668, 2012.   DOI
40 Kim, Y., Nelson, J., Zhang, T., Cook, S., Durrant, J. R., Kim, H., Park, J., Shin, M., Nam, S., Heeney, M., McCulloch, I., Ha, C. S., and Bradley, D. D. C., "Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells", ACS Nano, Vol. 3, No. 9, pp. 2557-2562, 2009.   DOI
41 Kim, H., Shin, M., Park, J., and Kim, Y., "Initial performance changes of polymer/fullerene solar cells by short-time exposure to simulated solar light", ChemSusChem, Vol. 3, No. 4, pp. 476-480, 2010.   DOI
42 Kim, H., Shin, M., Park, J., and Kim, Y., "Effect of long time annealing and incident light intensity on the performance of polymer:fullerene solar cells", IEEE Trans. Nanotechnol., Vol. 9, No. 3, pp. 400-406, 2010.   DOI
43 Nam, S., Woo, S., Seo, J., Kim, W. H., Kim, H., McNeill, C. R., Shin, T. J., Bradley, D. D. C., and Kim, Y., "Pronounced cosolvent effects in polymer:polymer bulk heterojunction solar cells with sulfur-rich electron-donating and imide- containing electronaccepting polymers", ACS Appl. Mater. Interfaces, Vol. 7, No. 29, pp. 15995-16002, 2015.   DOI
44 Jorgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., and Krebs, F. C., "Stability of polymer solar cells", Adv. Mater., Vol. 24, No. 5, pp. 580-612, 2012.   DOI
45 Nam, S., Shin, M, Kim, H., and Kim, Y., "Temperature/time-dependent crystallization of polythiophene:fullerene bulk heterojunction films for polymer solar cells", Nanoscale, Vol. 2, pp. 2384-2389, 2010.   DOI