• 제목/요약/키워드: Thermal Power Generation System

검색결과 341건 처리시간 0.023초

저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구 (Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat)

  • 김경훈;김세웅;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

분산형 마이크로 터빈 열병합 발전시스템 개발 (Development of Distributed Micro Turbine Co-generation System)

  • 권기훈;김승우;이시우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.320-327
    • /
    • 2002
  • In concert with the growing emphasis placed on distributed power generation there will be a need, in the first decade of the 21th century, for a compact thermal energy system capable of providing the total energy needs of individual homes. A natural gas fueled co-generation micro-turbine with ultra low emission will meet this need. Market opportunities for a distributed micro turbine co-generation system are projected to increase dramatically. In this paper, It was determined that with current state of art component performance levels, metrallic materials, thermal efficiency goal of $28\%$ at sea level standard day conditions are attainable. Higher overall thermal efficiency of $78\%$ is attainable with micro-turbine combined with exhaust fired boilers.

  • PDF

서로다른 발전방식으로 운전되는 산업용 열병합발전시스템의 최적운전계획 수립 (Operation Scheduling of Industrial Cogeneration System with Each other Generation Mode)

  • 정지훈;이종범;오성근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.354-356
    • /
    • 2000
  • This paper describes the strategy of a daily optimal operational scheduling on cogeneration systems with each other generation mode. The cogeneration systems consists of three generators. auxiiiary devices which are three auxiliary boilers, two waste boilers and three sludge incinerators. One unit that using the back pressure turbin generates the electrical and the thermal energy. The other two units that using the extraction condensing turbine generate the energy. Auxiliary devices operate to supplement the thermal energy to the thermal load with three units. The cogeneration system has a large capacity which is able to supply enough the thermal energy to the thermal load, however the electric power generated is insufficient to satisfy the electrical load. Therefore the insufficient electric energy is supplemented by buying electrical energy from the utility. Simulation was carried out using optimization toolbox. The result reveals that the proposed modeling and strategy can be effectively applied to cogeneration systems with each other generation mode.

  • PDF

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

빌딩 마이크로그리드가 포함된 새로운 빌딩에너지 시스템 구축방향에 관한 연구 (The Novel Configuration for Building Energy System Including Build ins Microgrid)

  • 홍원표
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.235-240
    • /
    • 2008
  • The recent development of efficient thermal prime movers for distributed generation id changing the focus of the production of electricity from large centralized power plants to local generation units scattered over the territory. The scientific communality is addressing the analysis and planning of the distributed energy resources(der) with wide spread approaches, taking into account technical, environmental, economical and social issues. The coupling of cogeneration system to absorption/electric chillers or heat pumps as well as the interactions with renewable sources, allow for setting up multi-generation systems for building cooling heating and power(BCHP) systems of different energy vectors such as electricity, heat(at different enthalpy levels), cooling power, hydrogen, various chemical substances and so forth. Adoption of the composite multi-generation systems may lead to significant benefits in term of higher efficiency, reduced $CO_2$ emissions and enhanced economy. This paper outlines the main aspects of the BCHP system framework, illistrating its characteristics and summarizing the relevant distributed multi-generation structures.

  • PDF

해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석 (Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation)

  • 류종혁;정현석;정석권
    • 수산해양기술연구
    • /
    • 제60권2호
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

디젤발전 자켓냉각시스템 열성능 향상 연구 (Performance Research of a Jacket Cooling Water System in a Diesel Electric Generation)

  • 이재근;문전수;윤석원;박필양
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.534-539
    • /
    • 2009
  • One of the most efficient techniques improving the heat transfer performance of a diesel electric generation is a corrosion control in jacket cooling water system. The environmental parameters most affecting corrosion are dissolved salt concentration, temperature, and pH of cooling water. No corrosion occurs in carbon steel probe at pH 11 in normal operating condition of diesel electric generation cooling water. pH control agent in this study is trisodium phosphate. pH control appears to be the most convenient way to enhance the thermal performance of a diesel electric generation.

최적전원차성을 위한 절감 시뮬레이션 방법의 개발 (The Development of the Simplified Simulation Technique for the Best Generation Mix)

  • 송길영;최재석
    • 대한전기학회논문지
    • /
    • 제37권6호
    • /
    • pp.339-349
    • /
    • 1988
  • The simplified simulation technique for the best generation mix is developed and the studied results are described. The best generation mix over study time from the economic point of view can be easily constructed by this technique. Generator maintenance, the operation of pumpgenerator and LNG thermal generator with limited energy are simulated variously, so a role of each generator is also easily evaluated. Through parametric analysis, useful planning guide points are obtained for the best generation mix transition, nuclear power plant construction cost, ruanium cost , oil cost, coal cost and midnight factor in the study case corresponding to real power system size model.

  • PDF

1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전 (Design and Self-sustainable Operation of 1 kW SOFC System)

  • 이태희;최진혁;박태성;유영성;남석우
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

온실 냉난방을 위한 연료전지 기반 열병합 발전 시스템 (Fuel Cell-based Cogeneration System for Greenhouse Cooling and Heating)

  • 박진영;뚜안앵;박승용;이동근;배용균;김영상;이상민
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.667-672
    • /
    • 2023
  • This study proposes polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system for greenhouse heating and cooling. The main scope of this study is to examine the proposed cogeneration system's suitability for the 660 m2-class greenhouse. A 25 kW PEMFC system generates electricity for two identical air-cooled heat pumps, each with a nominal heating capacity of 70 kW and a cooling capacity of 65 kW. Heat recovered from the fuel cell supports the heat pump, supplying hot water to the greenhouse. In cooling mode, the adsorption system provides cold water to the greenhouse using recovered heat from the fuel cell. As a result, the cogeneration system satisfies both heating and cooling capability, performing 175 and 145 kW, respectively.