• Title/Summary/Keyword: Thermal Gradient

Search Result 608, Processing Time 0.03 seconds

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

Efficiency Analysis of Thermal Transpiration According to Knudsen Number for Application to Micro-propulsion System (마이크로 추진장치에 적용을 위한 누센수에 따른 열적발산원리의 효율분석)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.483-490
    • /
    • 2008
  • Minimization of nozzle induces many flow losses in micro-propulsion system. In this study, we studied about thermal transpiration based micro propulsion system to overcome these losses. Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the Knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. Experimental results showed that thick membranes are more effective than thin membranes in transition flow regime, and pressure gradient efficiency according to Knudsen number is increased to maximum 82% apart from membrane thickness in free molecular regime.

A Study on Zirconia/Metal.Functionally Gradient Materials by Sintering Method(1) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(1))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 1994
  • Functionally gradient materials(FGM), which have the continuous or stepwise variation in a composition and microstructure, are being noticed as the material that solves problems caused by heterogeneous interface of coating or joining. And these materials also expect new functions occured by gradient composition itself. Therefore, to examine possibility of thermal barrier materials, TZP/Mo·FGM and TZP/Ni·FGM were fabricated by sintering method. As to the sintered specimens, sintering shrinkage, relative density and Vicker's hardness in each composition were examined. The phenomena due to the difference of sintering shrinkage velocity during sintering process and the thermal stress induced through differences of thermal expansion coefficient in FGM were discussed. And the structure changes at interface and microsturcture of FGM were investigated. As a results, the difference of shrinkage between ceramic and metal was about 14% in TZP/Mo and 7% in TZP/Ni. The relative density and hardness were considerably influenced by metal content changes. Owing to unbalance of sintering shrinkage velocity between ceramic and metal, various sintering defects were occured. To control these sintering defects and thermal stress, gradient composition of FGM should be narrow. The microstructure changes of FGM depended on the ceramic or metal volume percents and were analogous to the theoretical design.

  • PDF

Development of the Heat-Resistant Functionally Gradient Material with Metal Substrate (금속기지 내열 경사기능 복합재료 개발에 관한 연구)

  • Kim, Bu-Ahn;Nam, Ki-Woo;Cho, Mun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.62-69
    • /
    • 1999
  • 67Ni-22Cr-10Al-1Y and $ZrO_2-8Y_2O_3$ were coated on the substrate surface of ST304 and Al2024 by the plasma spraying method. The adgesion of the films varies depending on the substrates and the laminating method. In the case of STS304, the cracks were observed at thermal shock temperature difference ${Delta}T$ of $900^{circ}C$ in the non functionally gradient material(NFGM) and at $1100^{circ}C$ in the functionally gradient material(FGM). The film adhesion of the FGM is better than that of the NFGM in ST304. The cumulative AE count of the FGM of STS304 increased continuously at the bending test. But the NFGM of STS304 showed discontinuity of the AE count. The total AE count for the FGM of STS304 decreased as the number of thermal shock increased, and this tendency was evident as the thermal shock temperature difference increased.

  • PDF

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

A Study on the Behavior of Prestressed Concrete Storage Tanks under Cryogenic Conditions (프리스트레스트 콘크리트 저장 탱크의 저온 조건에서의 거동 연구)

  • 양인환;고재일;김우진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.363-366
    • /
    • 1999
  • This paper describes the behavior of prestressed concrete storage tanks under cryogenic temperatures by thermal stress analysis. In concrete tanks to store up LNG, a thermal shock can occur over a global area resulting from the sudden filling of the outer tank with cryogenic storage contents. Analysis results show that internal surface of concrete tank is cooled down rapidly. Tank is subjected mostly to thermal constraint moment due to temperature gradient across its section. Constraint moment may cause tensile stresses beyond tensile strength in the wall. Problems related with concrete cracking due to temperature gradient have been considered.

  • PDF

The effect of corner shape in the casting mould on thermal stresses distribution (金型의 모서리부 形狀이 熱應力分布에 미치는 影響)

  • 민수홍;구본권;김옥삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.567-574
    • /
    • 1991
  • In this study thermal stress generated in three ingot moulds(GC25) during the solidification process of aluminum were analyzed by the two-dimensional thermo-elasto-plastic theory. In temperature analysis, all of the three models are shown steep temperature rising each case in initial stage of cooling. In thermal stress analysis, all of three models took compressible stress on inside wall of the mould, and tensible along with on out side. Model 2 take place less compressible, tensible stress then model 1. But model 3. have similar as thermal stress as model 2. The analysis will made one possible to calculate an optimum mould shape whose thermal stress gradient becomes minimum.

A Theoretical Study for the Thermal Diffusivity Measurement of Semi-Infinite Solid Using Photothermal Displacement Method (광열변위법을 이용한 반무한 고체의 열확산계수 결정에 대한 이론적 연구)

  • Jeon, Pil-Soo;Lee, Kwang-Jai;Yoo, Jai-Suk;Park, Young-Moo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1747-1755
    • /
    • 2002
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of the parameters, such as radius and modulation frequency of the heating beam and the thermal diffusivity, was studied. Usually, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, we proposed the simple analysis method based on the real part of deformation gradient as the relative position between two beams. It is independent in the parameters such as power of heating beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

Thermal Impact Characteristics by Forest Fire on Porcelain Insulators for Transmission Lines

  • Lee, Won-Kyo;Choi, In-Hyuk;Choi, Jong-Kee;Hwang, Kab-Cheol;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.143-146
    • /
    • 2008
  • In this study the thermal impact characteristics by forest fire are extensively investigated using temperature controlled ovens. The test conditions for thermal impact damage are simulated according to the characteristics of natural forest fire. The test pieces are suspension porcelain insulators made by KRI in 2005 for transmission lines. In the thermal impact cycle tests with $300\;^{\circ}C$ thermal impact gradient (-70 to $230\;^{\circ}C$), cycling in 10 minute periods, no critical failures occurred in the test samples even with long cycle times. But in tests with thermal impact gradient from room temperature to $200-600\;^{\circ}C$, cycling in 10 to 30 minute periods, there were critical failures of the porcelain insulators according to the thermal impact gradient and quenching method. In the case of thermal impact by forest fire, it was found of that duration time is more important than the cycling time, and the initiation temperature of porcelain insulator failures is about $300\;^{\circ}C$, in the case of water quenching, many cracks and fracture of the porcelain occurred. It was found that the thermal impact failure is closely related to the displacement in the cement by thermal stress as confirmed by simulation. It was estimated that the initiation displacement by the thermal impact of $300\;^{\circ}C$ is about 0.1 %. Above 1% displacement, it is expected that the most porcelain insulators would fail.