Browse > Article
http://dx.doi.org/10.12989/scs.2018.29.1.053

A high-order gradient model for wave propagation analysis of porous FG nanoplates  

Shahsavari, Davood (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Li, Li (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology)
Publication Information
Steel and Composite Structures / v.29, no.1, 2018 , pp. 53-66 More about this Journal
Abstract
A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.
Keywords
nanoporous materials; wave propagation; bi-Helmholtz nonlocal strain gradient theory; higher-order shear deformation plate theory; thermal loadings;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA Journal, 40(1), 137-146.   DOI
2 Shimpi, R. and Patel, H. (2006a), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4), 979-999.   DOI
3 Shimpi, R. and Patel, H. (2006b), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43(22-23), 6783-6799.   DOI
4 Thai, H.-T. and Kim, S.-E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54(1), 269-276.   DOI
5 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120.   DOI
6 Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165.   DOI
7 Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28.   DOI
8 Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1), 130-135.   DOI
9 Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., Int. J., 64(2), 145-153.
10 Touloukian, Y.S. and Ho, C. (1970), "Thermal expansion. Nonmetallic solids", Thermophysical properties of matter-The TPRC Data Series, New York: IFI/Plenum, 1970-, edited by Touloukian, YS e (series ed.); Ho, CY e (series tech. ed.).
11 Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785.   DOI
12 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Threedimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14.
13 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155.   DOI
14 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324.   DOI
15 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B: Eng., 60, 423-439.   DOI
16 Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Oscillations of functionally graded microbeams", Int. J. Eng. Sci., 110, 35-53.   DOI
17 Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stabil. Dyn., 1850013.
18 Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726.
19 Huang, X.-L. and Shen, H.-S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solids Struct., 41(9), 2403-2427.   DOI
20 Kapuria, S., Bhattacharyya, M. and Kumar, A. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402.   DOI
21 Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421.   DOI
22 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374.
23 Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390.   DOI
24 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110.
25 Karami, B., Shahsavari, D. and Janghorban, M. (2018e), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057.
26 Li, L. and Hu, Y. (2016a), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97.   DOI
27 Li, L. and Hu, Y. (2016b), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Computat. Mater. Sci., 112, 282-288.   DOI
28 Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A. and Taya, M. (2003), "Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators", J. Am. Ceramic Soc., 86(7), 1094-1098.   DOI
29 Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216.
30 Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264.   DOI
31 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018f), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111.   DOI
32 Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313.   DOI
33 Li, Q., Iu, V. and Kou, K. (2009), "Three-dimensional vibration analysis of functionally graded material plates in thermal environment", J. Sound Vib., 324(3), 733-750.   DOI
34 Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092.
35 Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 75, 118-124.   DOI
36 Lin, Q.-Y., Jing, G., Zhou, Y.-B., Wang, Y.-F., Meng, J., Bie, Y.-Q., Yu, D.-P. and Liao, Z.-M. (2013), "Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition", ACS Nano, 7(2), 1171-1177.   DOI
37 Mechab, I., Atmane, H.A., Tounsi, A. and Belhadj, H.A. (2010), "A two variable refined plate theory for the bending analysis of functionally graded plates", Acta Mech. Sinica, 26(6), 941-949.   DOI
38 Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 8(38), 2193-2211.
39 Karami, B., Shahsavari, D., Karami, M. and Li, L. (2018g), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 0954406218781680.
40 Karami, B., Shahsavari, D. and Li, L. (2018h), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 97, 317-327.
41 Barati, M.R. (2017b), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., Int. J., 64(6), 683-693.
42 Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412.
43 Azadi, V., Azadi, M., Fazelzadeh, S.A. and Azadi, E. (2014), "Active control of an fgm beam under follower force with piezoelectric sensors/actuators", Int. J. Struct. Stabil. Dyn., 14(2), 1350063.   DOI
44 Barati, M.R. (2017a), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11.   DOI
45 Koutsoumaris, C.C., Vogiatzis, G., Theodorou, D., Tsamasphyros, G., Simos, T.E., Kalogiratou, Z. and Monovasilis, T. (2015), "Application of bi-Helmholtz nonlocal elasticity and molecular simulations to the dynamical response of carbon nanotubes", AIP Conference Proceedings, AIP Publishing, 190011.
46 Karami, B., Shahsavari, D. and Li, L. (2018i), "Temperaturedependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Thermal Stresses, 41(4), 483-499.   DOI
47 Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018j), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 0954406218756451.
48 Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., Int. J., 63(4), 439-446.
49 Lam, D.C.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508.   DOI
50 Lazar, M., Maugin, G.A. and Aifantis, E.C. (2006), "On a theory of nonlocal elasticity of bi-Helmholtz type and some applications", Int. J. Solids Struct., 43(6), 1404-1421.   DOI
51 Narendar, S. and Gopalakrishnan, S. (2012), "Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory", Acta Mechanica, 223(2), 395-413.   DOI
52 Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi, A. and Bedia, E.a.A. (2017), "A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Steel Compos. Struct., Int. J., 23(3), 317-330.
53 Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., Int. J., 22(4), 713-732.   DOI
54 Nami, M.R. and Janghorban, M. (2014), "Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress", Modern Phys. Lett. B, 28(03), 1450021.
55 Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos. Struct., 153, 428-441.
56 Praveen, G. and Reddy, J. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476.   DOI
57 Rad, A.B. (2015), "Thermo-elastic analysis of functionally graded circular plates resting on a gradient hybrid foundation", Appl. Math. Computat., 256, 276-298.
58 Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626.   DOI
59 Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270.
60 Barati, M.R. and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892.
61 Bhattacharyya, M., Kapuria, S. and Kumar, A. (2007), "On the stress to strain transfer ratio and elastic deflection behavior for Al/SiC functionally graded material", Mech. Adv. Mater. Struct., 14(4), 295-302.   DOI
62 Ebrahimi, F. and Dabbagh, A. (2018), "Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments", Struct. Eng. Mech., Int. J., 65(6), 645-656.
63 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018b), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149.   DOI
64 Sehoul, M., Benguediab, M., Bakora, A. and Tounsi, A. (2017), "Free vibrations of laminated composite plates using a novel four variable refined plate theory", Steel Compos. Struct., Int. J., 24(5), 603-613.
65 Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S. (2017), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., Int. J., 25(4), 389-401.
66 Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861.   DOI
67 Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013.   DOI
68 Shahsavari, D., Karami, B. and Mansouri, S. (2018a), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech.-A/Solids, 67, 200-214.   DOI
69 She, G.-L., Yuan, F.-G., Ren, Y.-R. and Xiao, W.-S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142.   DOI
70 She, G.-L., Ren, Y.-R., Yuan, F.-G. and Xiao, W.-S. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35.   DOI
71 Sarangan, S. and Singh, B. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403.
72 Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131.   DOI
73 Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates". Struct. Eng. Mech., Int. J., 62(4), 401-415.   DOI
74 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
75 Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33.
76 Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23.   DOI
77 Fazzolari, F.A. (2016), "Modal characteristics of P-and S-FGM plates with temperature-dependent materials in thermal environment", J. Thermal Stresses, 39(7), 854-873.   DOI
78 Ghayesh, M.H. (2018b), "Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350.   DOI
79 Ghayesh, M.H. (2018c), "Mechanics of tapered AFG sheardeformable microbeams", Microsyste. Technol., 24(4), 1743-1754.   DOI
80 Ghayesh, M.H. (2018d), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596.
81 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60.   DOI