• 제목/요약/키워드: Thermal Durability

검색결과 509건 처리시간 0.022초

엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구 (A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine)

  • 류택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF

Thermal Durability of Al2TiO5-Mullite Composites and Its Correlation with Microstructure

  • Kim, Hyung-Chul;Lee, Dong-Jin;Kweon, Oh-Seong;Kim, Ik-Jin
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.532-536
    • /
    • 2005
  • Thermal shock resistance of structural ceramics is a property that is difficult to quantity, and as such is usually expressed in terms of a number of empirical resistance parameters. These are dependant on the conditions imposed, but one method that can be used is the examination of density, Young's modulus and thermal expansion retention after quenching. For high temperature applications, long-annealing thermal durability, cycle thermal stability and residual mechanical properties are very important if these materials are to be used between $1000^{\circ}C$ and $1300^{\circ}C$. In this study, an excellent thermal shock-resistant material based on $Al_2TiO_5-mullite$ composites of various compositions was fabricated by sintering reaction from the individual oxides and adjusting the composition of $Al_2O_3TiO_2/SiO_2$ ratios. The characterization of the damage induced by thermal shock was done by measuring the evolution of the Young's modulus using ultrasonic analysis, density and thermal expansion coefficients.

증량제 혼합비율에 따른 네온변압기의 열내구성 평가 (Thermal Durability of Neon Transformer with Diluent Mixing Ratio)

  • 홍인권;전길송;이승범
    • 공업화학
    • /
    • 제26권4호
    • /
    • pp.452-457
    • /
    • 2015
  • 네온변압기용 에폭시계 수지는 변압기로 완성되었을 경우 내열성 및 온도차 피로극복 등 열내구성이 우수하여야 한다. 따라서 본 연구에서는 에폭시계 수지에 보강제로 이산화규소를 첨가하고 증량제로 silica를 선정하여 입자크기별 혼합비에 따른 열전도도와 열안정성을 측정하였다. 혼합 silica의 최적 첨가량은 50 wt%이었으며, 혼합 silica 중 입자크기가 큰 규사의 첨가량이 증가함에 따라 열안정성이 우수하였다. 혼합 silica의 입자크기별 최적 혼합비는 (28/35 : 14/18 : 8/10 mesh = 1 : 1 : 1)이었으며, 이로부터 열내구성이 향상된 네온변압기를 제작할 수 있었다.

Vanadia SCR의 열적 열화에 따른 조촉매의 영향 (The Effect of Additive Catalyst according to Thermal Aging of Vanadia SCR)

  • 서충길
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.14-19
    • /
    • 2014
  • The purpose of the study is to investigate the effect of additive catalyst according to the thermal aging of vanadia SCR catalysts. At a fresh condition, the $3V_2O_5-5WO_5-92TiO_2$ SCR showed the highest NOx conversion rate of about 30%, the performance of 5 kinds of SCR to which additive catalysts were added was not improved due to the insignificant effect of acid site control. For catalysts aged for 12h at $700^{\circ}C$, the SCR to which 3wt% Zeolite was added decreased in NOx conversion rate by 2.5% on average compared to the fresh SCR, it showed higher thermal durability than other additive catalyst. For 3Zeolite with high performance of NOx conversion rate during thermal aging, the Zeolite with stronger durability at a high temperature than other 5 kinds of SCR catalysts decreased the sintering of catalysts.

Effect of Substituting B2O3 for P2O5 in Conductive Vanadate Glass

  • Choi, Suyeon;Kim, Jonghwan;Jung, Jaeyeop;Park, Hyeonjoon;Ryu, Bongki
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.140-145
    • /
    • 2015
  • In this study, we verified the relationship among the electrical conductivity, chemical durability, and structure of conductive vanadate glass in which $BO_3$ and $BO_4$ and $V^{4+}$ and $V^{5+}$ coexist simultaneously. We prepared samples of vanadium borophosphate glass with various compositions, given by $50V_2O_5-xB_2O_3-(50-x)P_2O_5$(x = 0 ~ 20 mol%) and $70V_2O_5-xB_2O_3-(70-x)P_2O_5$(x = 0 ~ 10 mol%), and analyzed the electrical conductivity, chemical durability, FT-IR spectroscopy, thermal properties, density, and molar volume. Substituting $B_2O_3$ for $P_2O_5$ was found to improve the electrical conductivity, chemical durability, and thermal properties. From these results, we can draw the following conclusions. First, the electrons shift from the electron rich $V^{4+}$ to the electron deficient $BO_3$ as the $B_2O_3$ content increases. Second, the improvement in chemical durability and thermal properties is attributed to an increase in cross-linked structures by changing from a $BO_3$ structure to a $BO_4$ structure.

TGO 성장이 열피로 수명에 미치는 영향 평가 (Evaluation of Effect on Thermal Fatigue Life Considering TGO Growth)

  • 송현우;이정민;김용석;오창서;한규철;이영제;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1155-1159
    • /
    • 2014
  • Thermal barrier coating (TBC) which is used to protect the substrate of gas turbine is exposed to high temperature environment. Because of high temperature environment, thermally grown oxide (TGO) is grown at the interface of thermal barrier coating in operation of gas turbine. The growth of TGO critically affects to durability of TBC, so the evaluation about durability of TBC with TGOs of various thickness is needed. In this research, TGO was inserted by aging of TBC specimen to evaluate the effect of the TGO growth. Then thickness of TGO was defined by microstructure analysis, and thermal fatigue test was performed with these aging specimens. Finally, the relation between thermal fatigue life and the TGO growth according to aging time was obtained.

Technical Obstacles to Suftla Flexible Microelectronics

  • Miyasaka, Mitsutoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1763-1766
    • /
    • 2007
  • Three technical obstacles must be overcome to build a fruitful business in the nascent industry of flexible microelectronics: the self-heating effect of thin film transistors (TFTs), the thermal and mechanical durability of flexible devices, and the cost issue. The self-heating effect is controlled through TFT shape, TFT electrical performance, dimensional reduction and energy-efficient circuits. Plastic engineering is one of the keys to solving thermal and mechanical durability problems faced by flexible microelectronics devices. For the Suftla flexible microelectronics business to be viable, Suftla transfer yield must be sufficiently high to keep down device cost. Improving the transfer yield is not easy, but it is the same challenge already faced and cleared in the TFT liquid crystal display industry.

  • PDF

염수환경을 고려한 섬유강화 복합재의 내구성 평가 (Durability of Fiber Reinforced Composites under Salt Water Environments)

  • 윤성호;황영은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.391-396
    • /
    • 2005
  • Salt water spray test and salt water immersion test were experimentally conducted in order to investigate the durability of fiber reinforced composites under salt water environment. The specimens were made of glass fabric reinforcement and phenolic resin. Mechanical test was performed to obtain mechanical properties such as tensile properties, flexural properties, and shear properties by varying with exposure times. Also dynamic mechanical test and FTIR were conducted to investigate a change in chemical structure as well as thermal analysis properties such as storage shear modulus, loss shear moduls, and tan ${\delta}$. According to the results, salt water environment has effected on mechanical properties and thermal analysis properties and especially the durability of glass fabric/phenolic composites were severely affected on salt water immersion environment rather than salt water spray environment.

  • PDF

가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구 (The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test)

  • 김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제37권4호
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.

PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향 (Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane)

  • 이미화;오소형;박유준;유동근;박권필
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.7-11
    • /
    • 2022
  • 고분자전해질 연료전지의(PEMFC)의 제막 과정에서 성능 및 내구성을 위해 건조와 어닐링의 열처리 과정이 필요하다. 본 연구에서는 고분자막 내구성 향상을 위한 최적의 어닐링 온도에 대해 연구하였다. 125~175 ℃ 온도 범위에서 어닐링하였고, 각 어닐링 온도에서 내구성의 기초 자료로 열 안정성 및 수소투과도를 측정하였다. 펜톤 반응과 OCV holding에 의해 전기화학적 내구성을 분석했다. 165 ℃ 어닐링 온도가 열 안정성과 수소투과도 면에서 최적의 온도였다. 펜톤 반응에서 165 ℃에서 어닐링한 막의 불소유출속도가 제일 낮고, OCV holding 실험에서도 165 ℃에서 어닐링한 막의 수명이 제일 길어, 165 ℃가 고분자막의 내구성을 위한 최적의 온도임을 확인했다.