• Title/Summary/Keyword: Thermal Displacement

Search Result 504, Processing Time 0.019 seconds

Thermal buckling of functionally graded plates using a n-order four variable refined theory

  • Abdelhak, Z.;Hadji, L.;Daouadji, T.H.;Bedia, E.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 2015
  • This paper presents a simple n-order four variable refined theory for buckling analysis of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present n-order refined theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

The effects of thermo-mechanical behavior of living tissues under thermal loading without energy dispassion

  • Ibrahim Abbas;M. Saif AlDien;Mawahib Elamin;Alaa El-Bary
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.61-72
    • /
    • 2024
  • This study seeks to develop analytical solutions for the biothermoelastic model without accounting for energy dissipation. These solutions are then applied to estimate the temperature changes induced by external heating sources by integrating relevant empirical data characterizing the biological tissue of interest. The distributions of temperature, displacement, and strain were obtained by utilizing the eigenvalues approach with the Laplace transforms and numerical inverse transforms method. The impacts of the rate of blood perfusion and the metabolic activity parameter on thermoelastic behaviors were discussed specifically. The temperature, displacement, and thermal strain results are visually represented through graphical representations.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

Effect of thermal annealing on low-energy C-ion irradiated MgB2 thin films

  • Jung, Soon-Gil;Son, Seung-Ku;Pham, Duong;Lim, W.C.;Song, J.;Kang, W.N.;Park, T.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.13-17
    • /
    • 2019
  • We investigate the effect of thermal annealing on $MgB_2$ thin films with thicknesses of 400 and 800 nm, irradiated by 350 keV C-ions with a dose of $1{\times}10^{15}atoms/cm^2$. Irradiation by low-energy C-ions produces atomic lattice displacement in $MgB_2$ thin films, improving magnetic field performance of critical current density ($J_c$) while reducing the superconducting transition temperature ($T_c$). Interestingly, the lattice displacement and the $T_c$ are gradually restored to the original values with increasing thermal annealing temperature. In addition, the magnetic field dependence of $J_c$ also returns to that of the pristine state together with the restoration of $T_c$. Because $J_c$(H) is sensitive to the type and density of the disorder, i.e. vortex pinning, the recovery of $J_c$(H) in irradiated $MgB_2$ thin films by thermal annealing indicates that low-energy C-ion irradiation on $MgB_2$ thin films primarily causes lattice displacement. These results provide new insights into the application of low-energy irradiation in strategically engineering critical properties of superconductors.

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

HIGHER ORDER ZIG-ZAG SHELL THEORY FOR SMART COMPOSITE STRUCTURES UNDER THERMO-ELECTRIC-MECHANICAL LOADING (고차 지그재그 이론을 이용한 열_전기_기계 하중하의 스마트 복합재 쉘 구조물의 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.1-4
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine accurately predict deformation and stress of smart shell structures under the mechanical, thermal, and electric loading. The displacement fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. The mechanical, thermal, and electric loading is applied in the sinusoidal distribution function in the in-surface direction. Thermal and electric loading is given in the linear variation through the thickness. Especially, in electric loading case, voltage is only applied in piezo-layer. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. In order to obtain accurate transverse shear and normal stresses, integration of equilibrium equation approach is used. The numerical examples of present theory demonstrate the accuracy and efficiency of the proposed theory. The present theory is suitable for the predictions of behaviors of thick smart composite shell under mechanical, thermal, and electric loadings combined.

  • PDF

Importance Of Tribology in Positive-Displacement Type of Fluid Machinery and Heat Engine

  • Nakahara, Tsunamitsu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.3-8
    • /
    • 1998
  • The industrial revolution in England was based on the manufacturing systems by the power of water mill and rapidly progressed by the innovation of steam engine. It is no exaggeration to say that today's civilization is realized by the development of various types of power machinery, namely fluid machinery and heat engine. The electric energy is converted mainly from thermal energy (mainly steam) of mineral oil, coal and nuclear fuel through generator connected with steam turbine which is a kind of power machinery. There are various types of power machinery as shown in Tables 1a and 1b. They are classified into two types by use. One is absorption type of fluid and/or thermal energy, for examples, windmill and heat engine. The other is provision type of the energies for examples, pump, compressor and propulsion. By flow type, they are also classified by two types, turbo type and positive-displacement type. The turbo type began from water mill and windmill and evolve to steam turbine and finally to gas turbine. The positive-displacement type started from reciprocating water pump and developed into steam engine and changed to reciprocating combustion engine. The pumps and motors used in oil hydraulic system for power control are also positive-displacement type.

  • PDF

$\pi$-A properties of phospholipid monolayers by Maxwell-displacement-current-measuring technique (변위전류법에 의한 지질 단분자막의 $\pi$-A특성)

  • 이경섭;전동규;권영수;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.120-123
    • /
    • 1995
  • Maxwell-Displacement-Currnt-Measuring Technique(MDCM) is a simple system for displacement current measuring which consist with two electrodes to the electrometer, With this method, the displacement current flow only when the electric flux density change by the displacement of molecules or charge particles of membrance on the water surface. Thus, It is Possible to detect dynamic behavior of molecules of membrane without any electrical contact with molecule membrane. In this paper, We measure surface pressure, displacement current and dipole moment of phospholipid monolayers on the wafer surface with applied pressure by MDCM and We measured DTA(differential thermal analysis).

  • PDF

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

A study on the structural of phospholipid membranes by thermally stimulated displacement current method (열자격 변위 전류법에 의한 인지질막의 구조 연구)

  • 이경섭;김우연;권영수;이준응;강도열
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.696-701
    • /
    • 1996
  • In this study, deposited lipid membranes on the electrode and detected thermally stimulated displacement current generated from it. The researchers examined displacement current of electric conduction organic monolayer generated due to orient change of monolayers alkylchain and changed of dipole moment vertical component due to thermally stimulated. We paid attention to the phase transition temperature obtained by the thermally stimulated displacement current of lipid membrane layers this time. We detected the thermally stimulated displacement current peak of layers. From above results the transition temperature dilauroylphosphatidylcholine layers is about 43.deg. C. This study also compared above results with those obtained by differential thermal analysis method.

  • PDF