DOI QR코드

DOI QR Code

Effect of thermal annealing on low-energy C-ion irradiated MgB2 thin films

  • Jung, Soon-Gil (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University) ;
  • Son, Seung-Ku (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University) ;
  • Pham, Duong (Department of Physics, Sungkyunkwan University) ;
  • Lim, W.C. (Advanced Analysis Center, Korea Institute of Science and Technology (KIST)) ;
  • Song, J. (Advanced Analysis Center, Korea Institute of Science and Technology (KIST)) ;
  • Kang, W.N. (Department of Physics, Sungkyunkwan University) ;
  • Park, T. (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University)
  • Received : 2019.07.22
  • Accepted : 2019.07.26
  • Published : 2019.09.30

Abstract

We investigate the effect of thermal annealing on $MgB_2$ thin films with thicknesses of 400 and 800 nm, irradiated by 350 keV C-ions with a dose of $1{\times}10^{15}atoms/cm^2$. Irradiation by low-energy C-ions produces atomic lattice displacement in $MgB_2$ thin films, improving magnetic field performance of critical current density ($J_c$) while reducing the superconducting transition temperature ($T_c$). Interestingly, the lattice displacement and the $T_c$ are gradually restored to the original values with increasing thermal annealing temperature. In addition, the magnetic field dependence of $J_c$ also returns to that of the pristine state together with the restoration of $T_c$. Because $J_c$(H) is sensitive to the type and density of the disorder, i.e. vortex pinning, the recovery of $J_c$(H) in irradiated $MgB_2$ thin films by thermal annealing indicates that low-energy C-ion irradiation on $MgB_2$ thin films primarily causes lattice displacement. These results provide new insights into the application of low-energy irradiation in strategically engineering critical properties of superconductors.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature. London, vol. 410, pp. 63-64, 2001. https://doi.org/10.1038/35065039
  2. M. Angst, S. L. Bud'ko, R. H. T. Wilke, and P. C. Canfield, "Difference between Al and C doping in anisotropic upper critical field development in $MgB_2$," Phys. Rev. B, vol. 71, pp.144512, 2005. https://doi.org/10.1103/PhysRevB.71.144512
  3. J. Y. Lim, et al., "Effects of surface-treated boron powder using chemical solvents," PSAC, vol. 20, pp. 11-14, 2018.
  4. Y. Kimishima, T. Okuda, M. Uehara, T. Kuramoto, "Doping effects of some metallic elements for SiC/$MgB_2$ bulk system," Physica C, vol. 463-465, pp. 286-289, 2007. https://doi.org/10.1016/j.physc.2007.03.495
  5. S. -G. Jung, et al., "A simple method for the enhancement of Jc in MgB2 thick films with an amorphous SiC impurity layer," Supercond. Sci. Technol., vol. 22, pp. 075010, 2009. https://doi.org/10.1088/0953-2048/22/7/075010
  6. K. Vinod, R. G. A. Kumar, and U. Syamaprasad, "Prospects for $MgB_2$ superconductors for magnet application," Supercond. Sci. Technol., vol. 20, pp. R1-R13, 2007. https://doi.org/10.1088/0953-2048/20/1/R01
  7. H. -J. Kim, W. N. Kang, E. -M. Choi, M. -S. Kim, K. H. P. Kim, and S. -I. Lee., "High current-carrying capability in c-axis-oriented superconducting $MgB_2$ thin films," Phys. Rev. Lett., vol. 87, pp. 087002, 2001. https://doi.org/10.1103/PhysRevLett.87.087002
  8. D. C. Larbalestier, et al., "Strongly linked current flow in polycrystalline forms of the superconductor $MgB_2$," Nature. London, vol. 410, pp. 186-189, 2001. https://doi.org/10.1038/35065559
  9. M. Kawasaki, et al., "Weak link behavior of grain boundaries in Nd-, Bi-, and Tl-based cuprate superconductors," Appl. Phys. Lett., vol. 62, pp. 417-419, 1993. https://doi.org/10.1063/1.108920
  10. D. C. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, "Enhancement of the high-magnetic-field critical current density of superconducting $MgB_2$ by proton irradiation," Nature. London, vol. 414, pp. 368-377, 2001. https://doi.org/10.1038/35104654
  11. D. Y. Bugoslavsky, et al., "High-Tc superconducting materials for electric power applications," Nature. London, vol. 411, pp. 561-563, 2001. https://doi.org/10.1038/35079024
  12. A. K. Pradhan, S. B. Roy, P. Chaddah, D. Kanjilal, C. Chen, and B. M. Wanklyn, "Flux pinning by columnar defects in $Bi_2Sr_2CaCu_2O_{8+{\delta}}$ single crystals," Physica C, vol. 264, pp. 109-119, 1996. https://doi.org/10.1016/0921-4534(96)00277-8
  13. W. S. Seow, et al., "Influence of columnar defects on vortex dynamics in $Bi_2Sr_2CaCu_2O_8$ from out-of-plane and flux transformer transport measurements," Phys. Rev. B, vol. 53, pp. 14611-14620, 1996. https://doi.org/10.1103/PhysRevB.53.14611
  14. A. Gupta, et al., "Study of magnetization and pinning mechanisms in $MgB_2$ thin film superconductors: effect of heavy ion irradiation," Supercond. Sci. Technol., vol. 16, pp. 951-955, 2003. https://doi.org/10.1088/0953-2048/16/8/322
  15. N. Chikumoto, A. Yamamoto, M. Konczykowski, and M. Murakami, "Magnetization behavior of $MgB_2$ and the effect of high energy heavy-ion irradiation," Physica C, vol. 378-381, pp. 466-469, 2002. https://doi.org/10.1016/S0921-4534(02)01472-7
  16. D. M. Duffy, N. Itoh, A. M. Rutherford, and A. M. Stoneham, "Making tracks in metals," J. Phys.: Condens. Matter., vol. 20, pp. 082201, 2008. https://doi.org/10.1088/0953-8984/20/8/082201
  17. W. K. Seong, S. Oh, and W. N. Kang, "Perfect domain-lattice matching between $MgB_2$ and $Al_2O_3$: single-crystal $MgB_2$ thin films grown on sapphire," Jpn. J. Appl. Phys., vol. 51, pp. 083101, 2012.
  18. W. K. Seong, et al., "Growth of superconducting $MgB_2$ thin films by using hybrid physical-chemical vapor deposition," J. Korean Phys. Soc., vol. 51, pp. 174-177, 2007. https://doi.org/10.3938/jkps.51.174
  19. The mean projected range and damage events by C ion irradiation in the $MgB_2$ were calculated using the SRIM software (www.srim.org/)
  20. J. Y. Huh, W. K. Seong, S. -G. Jung, and W. N. Kang, "Influence of Mg deficiency on superconductivity in $MgB_2$ thin films grown by HPCVD," Supercond. Sci. Technol., vol. 20, pp. 1169-1172, 2007. https://doi.org/10.1088/0953-2048/20/12/015
  21. S. -G. Jung, et al., "Influence of carbon-ion irradiation on the superconducting critical properties of $MgB_2$ thin films," Supercond. Sci. Technol., vol. 32, pp. 025006, 2019. https://doi.org/10.1088/1361-6668/aaf2c4
  22. D. M. Parkin, "Radiation effects in high-temperature superconductors: A brief review," Metall. Mater. Trans. A, vol. 21, pp. 1015-1019, 1990. https://doi.org/10.1007/BF02656523
  23. S. -G. Jung, et al., "Giant proximity effect in single-crystalline $MgB_2$ bilayers," Sci. Rep., vol. 9, pp. 3315, 2019. https://doi.org/10.1038/s41598-019-40263-9
  24. R. H. T. Wilke, S. L. Bud'ko, P. C. Canfield, J. Farmer, and S. T. Hannahs, "Systematic study of the superconducting and normalstate properties of neutron-irradiated $MgB_2$," Phys. Rev. B, vol. 73, pp. 134512, 2006. https://doi.org/10.1103/PhysRevB.73.134512
  25. S. -G. Jung, et al., "Enhanced critical current density in the carbonion irradiated $MgB_2$ thin films," J. Phys. Soc. Jpn., vol. 88, pp. 034716, 2019. https://doi.org/10.7566/JPSJ.88.034716
  26. T. Higuchi, S. I. Yoo, and M. Murakami, "Comparative study of critical current densities and flux pinning among a flux-grown $NdBa_2Cu_3O_y$ single crystal, melt-textured Nd-Ba-Cu-O, and Y-Ba-Cu-O bulks," Phys. Rev. B, vol. 59, pp. 1514-1527, 1999. https://doi.org/10.1103/physrevb.59.1514
  27. J. L. Wang, R. Zeng, J. H. Kim, L. Lu, and S. X. Dou, "Effects of C substitution on the pinning mechanism of $MgB_2$," Phys. Rev. B, vol. 77, pp. 174501, 2008. https://doi.org/10.1103/PhysRevB.77.174501
  28. W. Dai, et al., "High-field properties of carbon-doped $MgB_2$ thin films by hybrid physical-chemical vapor deposition using different carbon sources," Supercond. Sci. Technol., vol. 24, pp. 125014, 2011. https://doi.org/10.1088/0953-2048/24/12/125014