Browse > Article
http://dx.doi.org/10.9714/psac.2019.21.3.013

Effect of thermal annealing on low-energy C-ion irradiated MgB2 thin films  

Jung, Soon-Gil (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University)
Son, Seung-Ku (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University)
Pham, Duong (Department of Physics, Sungkyunkwan University)
Lim, W.C. (Advanced Analysis Center, Korea Institute of Science and Technology (KIST))
Song, J. (Advanced Analysis Center, Korea Institute of Science and Technology (KIST))
Kang, W.N. (Department of Physics, Sungkyunkwan University)
Park, T. (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University)
Publication Information
Progress in Superconductivity and Cryogenics / v.21, no.3, 2019 , pp. 13-17 More about this Journal
Abstract
We investigate the effect of thermal annealing on $MgB_2$ thin films with thicknesses of 400 and 800 nm, irradiated by 350 keV C-ions with a dose of $1{\times}10^{15}atoms/cm^2$. Irradiation by low-energy C-ions produces atomic lattice displacement in $MgB_2$ thin films, improving magnetic field performance of critical current density ($J_c$) while reducing the superconducting transition temperature ($T_c$). Interestingly, the lattice displacement and the $T_c$ are gradually restored to the original values with increasing thermal annealing temperature. In addition, the magnetic field dependence of $J_c$ also returns to that of the pristine state together with the restoration of $T_c$. Because $J_c$(H) is sensitive to the type and density of the disorder, i.e. vortex pinning, the recovery of $J_c$(H) in irradiated $MgB_2$ thin films by thermal annealing indicates that low-energy C-ion irradiation on $MgB_2$ thin films primarily causes lattice displacement. These results provide new insights into the application of low-energy irradiation in strategically engineering critical properties of superconductors.
Keywords
Thermal annealing; $MgB_2$ thin films; C-ion irradiation; critical current density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature. London, vol. 410, pp. 63-64, 2001.   DOI
2 M. Angst, S. L. Bud'ko, R. H. T. Wilke, and P. C. Canfield, "Difference between Al and C doping in anisotropic upper critical field development in $MgB_2$," Phys. Rev. B, vol. 71, pp.144512, 2005.   DOI
3 J. Y. Lim, et al., "Effects of surface-treated boron powder using chemical solvents," PSAC, vol. 20, pp. 11-14, 2018.
4 Y. Kimishima, T. Okuda, M. Uehara, T. Kuramoto, "Doping effects of some metallic elements for SiC/$MgB_2$ bulk system," Physica C, vol. 463-465, pp. 286-289, 2007.   DOI
5 S. -G. Jung, et al., "A simple method for the enhancement of Jc in MgB2 thick films with an amorphous SiC impurity layer," Supercond. Sci. Technol., vol. 22, pp. 075010, 2009.   DOI
6 K. Vinod, R. G. A. Kumar, and U. Syamaprasad, "Prospects for $MgB_2$ superconductors for magnet application," Supercond. Sci. Technol., vol. 20, pp. R1-R13, 2007.   DOI
7 H. -J. Kim, W. N. Kang, E. -M. Choi, M. -S. Kim, K. H. P. Kim, and S. -I. Lee., "High current-carrying capability in c-axis-oriented superconducting $MgB_2$ thin films," Phys. Rev. Lett., vol. 87, pp. 087002, 2001.   DOI
8 D. C. Larbalestier, et al., "Strongly linked current flow in polycrystalline forms of the superconductor $MgB_2$," Nature. London, vol. 410, pp. 186-189, 2001.   DOI
9 M. Kawasaki, et al., "Weak link behavior of grain boundaries in Nd-, Bi-, and Tl-based cuprate superconductors," Appl. Phys. Lett., vol. 62, pp. 417-419, 1993.   DOI
10 D. C. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, "Enhancement of the high-magnetic-field critical current density of superconducting $MgB_2$ by proton irradiation," Nature. London, vol. 414, pp. 368-377, 2001.   DOI
11 D. Y. Bugoslavsky, et al., "High-Tc superconducting materials for electric power applications," Nature. London, vol. 411, pp. 561-563, 2001.   DOI
12 A. K. Pradhan, S. B. Roy, P. Chaddah, D. Kanjilal, C. Chen, and B. M. Wanklyn, "Flux pinning by columnar defects in $Bi_2Sr_2CaCu_2O_{8+{\delta}}$ single crystals," Physica C, vol. 264, pp. 109-119, 1996.   DOI
13 W. S. Seow, et al., "Influence of columnar defects on vortex dynamics in $Bi_2Sr_2CaCu_2O_8$ from out-of-plane and flux transformer transport measurements," Phys. Rev. B, vol. 53, pp. 14611-14620, 1996.   DOI
14 A. Gupta, et al., "Study of magnetization and pinning mechanisms in $MgB_2$ thin film superconductors: effect of heavy ion irradiation," Supercond. Sci. Technol., vol. 16, pp. 951-955, 2003.   DOI
15 N. Chikumoto, A. Yamamoto, M. Konczykowski, and M. Murakami, "Magnetization behavior of $MgB_2$ and the effect of high energy heavy-ion irradiation," Physica C, vol. 378-381, pp. 466-469, 2002.   DOI
16 J. Y. Huh, W. K. Seong, S. -G. Jung, and W. N. Kang, "Influence of Mg deficiency on superconductivity in $MgB_2$ thin films grown by HPCVD," Supercond. Sci. Technol., vol. 20, pp. 1169-1172, 2007.   DOI
17 D. M. Duffy, N. Itoh, A. M. Rutherford, and A. M. Stoneham, "Making tracks in metals," J. Phys.: Condens. Matter., vol. 20, pp. 082201, 2008.   DOI
18 W. K. Seong, S. Oh, and W. N. Kang, "Perfect domain-lattice matching between $MgB_2$ and $Al_2O_3$: single-crystal $MgB_2$ thin films grown on sapphire," Jpn. J. Appl. Phys., vol. 51, pp. 083101, 2012.
19 W. K. Seong, et al., "Growth of superconducting $MgB_2$ thin films by using hybrid physical-chemical vapor deposition," J. Korean Phys. Soc., vol. 51, pp. 174-177, 2007.   DOI
20 The mean projected range and damage events by C ion irradiation in the $MgB_2$ were calculated using the SRIM software (www.srim.org/)
21 S. -G. Jung, et al., "Influence of carbon-ion irradiation on the superconducting critical properties of $MgB_2$ thin films," Supercond. Sci. Technol., vol. 32, pp. 025006, 2019.   DOI
22 D. M. Parkin, "Radiation effects in high-temperature superconductors: A brief review," Metall. Mater. Trans. A, vol. 21, pp. 1015-1019, 1990.   DOI
23 S. -G. Jung, et al., "Giant proximity effect in single-crystalline $MgB_2$ bilayers," Sci. Rep., vol. 9, pp. 3315, 2019.   DOI
24 W. Dai, et al., "High-field properties of carbon-doped $MgB_2$ thin films by hybrid physical-chemical vapor deposition using different carbon sources," Supercond. Sci. Technol., vol. 24, pp. 125014, 2011.   DOI
25 R. H. T. Wilke, S. L. Bud'ko, P. C. Canfield, J. Farmer, and S. T. Hannahs, "Systematic study of the superconducting and normalstate properties of neutron-irradiated $MgB_2$," Phys. Rev. B, vol. 73, pp. 134512, 2006.   DOI
26 S. -G. Jung, et al., "Enhanced critical current density in the carbonion irradiated $MgB_2$ thin films," J. Phys. Soc. Jpn., vol. 88, pp. 034716, 2019.   DOI
27 T. Higuchi, S. I. Yoo, and M. Murakami, "Comparative study of critical current densities and flux pinning among a flux-grown $NdBa_2Cu_3O_y$ single crystal, melt-textured Nd-Ba-Cu-O, and Y-Ba-Cu-O bulks," Phys. Rev. B, vol. 59, pp. 1514-1527, 1999.   DOI
28 J. L. Wang, R. Zeng, J. H. Kim, L. Lu, and S. X. Dou, "Effects of C substitution on the pinning mechanism of $MgB_2$," Phys. Rev. B, vol. 77, pp. 174501, 2008.   DOI