• Title/Summary/Keyword: Thermal Deformation Analysis

Search Result 748, Processing Time 0.023 seconds

Shape Memory Characteristics and Mechanical Properties of Rapidly Solidified $Ti_{50}Ni_{20}Cu_{30}$ Alloy Strips (급냉응고된 $Ti_{50}Ni_{20}Cu_{30}$ 합금 스트립의 형상기억특성과 기계적특성)

  • Kim, Yoen-Wook
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2009
  • Microstructures and shape memory characteristics of $Ti_{50}Ni_{20}Cu_{30}$ alloy strips fabricated by arc melt overflow have been investigated by means of XRD, optical microscopy and DSC. The microstructure of as-cast strips exhibited columnar grains normal to the strip surface. X-ray diffraction analysis showed that one-step martensitic transformation of B2-B19 occurred in the alloy strips. According to the DSC analysis, it was known that the martensitic transformation temperature ($M_s$) of B2 $\rightarrow$ B19 in $Ti_{50}Ni_{20}Cu_{30}$ strip is $57^{\circ}C$. During thermal cyclic deformation with the applied stress of 60 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $3.7^{\circ}C$ and 1.6%, respectively. The as-cast strip of $Ti_{50}Ni_{20}Cu_{30}$ alloy also showed a superelasticity and its stress hysteresis was as small as 14 MPa. These mechanical properties and shape memory characteristics of the alloy strips were ascribed to B2-B19 transformation and the controlled microstructures produced by rapid solidification of the arc melt overflow process.

Synthesis of $SrTiO_3$ from the Mixtures of $SrCO_3$ and $TiO_2$ ($SrCO_3$$TiO_2$를 사용한 $SrTiO_3$의 합성반응에 관한 연구)

  • 이종권;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.43-48
    • /
    • 1983
  • The formation of strontium titanate from several molar $SrCO_3$ and $TiO_2$ mixtures was studied in air and $CO_2$ gas Mixtures of $SrCO_3$ and $TiO_2$ were heated in air at 400-$600^{\circ}C$ DTA-TG was used to obtain thermal histories of simples heated in air and $CO_2$ gas. X-ray diffraction analysis was used to determine both the phase composition and the amounts of each phase present. The phase relationship of various compounds $SrTiO_3$, $Sr_2TiO_4$, $Sr_2Ti_3O_7$ and $Sr_4Ti_3O_{10}$ formed by the sintering in each composition was shown by the calibration curves. High temperature X-ray analysis was used to determine both the formation process and deformation process of each products. Small amount of SrTiO3 is formed first at the surface af contact SrTiO3 reacts with $SrCO_3$ to form Sr2TiO4 this is affected on the $CO_2$ pressure.

  • PDF

Numerical Analysis on the Mechanical Press Joining for the Sheet Metal with a Circular Hole (중공 박판의 기계적 프레스 결합에 관한 해석)

  • Lee, Se-Jung;Kim, Min-Woong;Lee, Jae-Won;Lee, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1453-1458
    • /
    • 2009
  • This study is to apply the mechanical press joining method to join two kinds of sheet metals with circular holes by mechanical pressing instead of laser beam. Usage of the mechanical pressing avoids the thermal deformation of sheet metals which occurs inevitably in laser joining. A die design has been proposed to make the mechanical press joining applicable with finite element analysis. Five design factors related to the joining force have been selected and applied to the Taguchi method for optimization. Among five factors, 'Forming Depth' and 'Punch Corner Radius' have been revealed to be the most influential ones.

Development of FURA Code and Application for Load Follow Operation (FURA 코드 개발과 부하 추종 운전에 대한 적용)

  • Park, Young-Seob;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.88-104
    • /
    • 1988
  • The FUel Rod Analysis(FURA) code is developed using two-dimensional finite element methods for axisymmetric and plane stress analysis of fuel rod. It predicts the thermal and mechanical behavior of fuel rod during normal and load follow operations. To evaluate the exact temperature distribution and the inner gas pressure, the radial deformation of pellet and clad, the fission gas release are considered over the full-length of fuel rod. The thermal element equation is derived using Galerkin's techniques. The displacement element equation is derived using the principle of virtual works. The mechanical analysis can accommodate various components of strain: elastic, plastic, creep and thermal strain as well as strain due to swelling, relocation and densification. The 4-node quadratic isoparametric elements are adopted, and the geometric model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The pellet cracking and crack healing, pellet-cladding interaction are modelled. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behavior accurately and stably. The pellet and cladding model has been compared with both analytical solutions and experimental results. The observed and predicted results are in good agreement. The general behavior of fuel rod is calculated by axisymmetric system and the cladding behavior against radial crack is used by plane stress system. The sensitivity of strain aging of PWR fuel cladding tube due to load following is evaluated in terms of linear power, load cycle frequency and amplitude.

  • PDF

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

A Study on the Modification of Asphalt with Light (빛에 의한 아스팔트 개질에 관한 연구)

  • Kang, Hyun-Seung;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • Recently, much attention has focused on the permanent deformation of roads in hot summer and cracks in cold winter, which are detrimental to safe driving. This leads to necessity of modification of asphalt to resist those deformation. In this study, a type of modified asphalt was prepared by addition of a photoinitiator which is activated by ultraviolet lay. The mechanical and rheololgical properties of photoinitiator-modified asphalt were examined using UTM and rheometer. Results showed that the modified asphalt was effected by ultraviolet and thus tensile strength and storage modulus increased, due to molecular attraction, with initiator content and irradiation dose. Thermal analysis showed less weight loss upon photoinitiator-modification and this indicated that the molecular attraction is the result of cross linking reaction between asphalt molecules induced by photoinitiator. According to long term ultraviolet curing test, properties of the photoinitiator-modified asphalt did not decrease or even increase for 20 years. This indicates that useful life of the asphalt could be extended by addition of photoinitiator.

Deformation Characteristics and Sealing Performance of Metallic O-rings for a Reactor Pressure Vessel

  • Shen, Mingxue;Peng, Xudong;Xie, Linjun;Meng, Xiangkai;Li, Xinggen
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.533-544
    • /
    • 2016
  • This paper provides a reference to determine the seal performance of metallic O-rings for a reactor pressure vessel (RPV). A nonlinear elastic-plastic model of an O-ring was constructed by the finite element method to analyze its intrinsic properties. It is also validated by experiments on scaled samples. The effects of the compression ratio, the geometrical parameters of the O-ring, and the structure parameters of the groove on the flange are discussed in detail. The results showed that the numerical analysis of the O-ring agrees well with the experimental data, the compression ratio has an important role in the distribution and magnitude of contact stress, and a suitable gap between the sidewall and groove can improve the sealing capability of the O-ring. After the optimization of the sealing structure, some key parameters of the O-ring (i.e., compression ratio, cross-section diameter, wall thickness, sidewall gap) have been recommended for application in megakilowatt class nuclear power plants. Furthermore, air tightness and thermal cycling tests were performed to verify the rationality of the finite element method and to reliably evaluate the sealing performance of a RPV.

Predicting the Morton Effect in a Steam Turbine with Sensitivity Vector (민감도 벡터를 이용한 스팀 터빈의 Morton Effect 발생 예측)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Junho Suh;Shinhun Kang;Seryong Kim
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.39-46
    • /
    • 2024
  • The Morton effect (ME) is an instability phenomenon occurring in rotating machineries supported by fluid film bearings and is induced by the thermal deformation of the overhung mass, which is a part of the rotating shaft. Herein, we describe the ME during the high-speed balancing test of a 20 MW class steam turbine. Additionally, to predict the rotating speed at which the ME occurs, we apply the sensitivity vector theory for the steam turbine. During the operation of the steam turbine, we observe a continuous increase in vibration and hysteresis near the rated speed, which is typical of the ME. Increasing the temperature of the lubricating oil supplied to the bearings from 40 to 60℃ suppresses the occurrence of the ME. The rotordynamic analysis for the steam turbine suggests the existence of a mode in which the overhung mass undergoes significant deformation near the rated speed, and we presume that such a mode will increase the occurrence of the ME. The predicted rotating speed of ME occurrence, obtained through the sensitivity vector method, correlates with the test results. Moreover, increasing the temperature of the supplied lubricating oil mitigates the occurrence of ME by reducing the sensitivity between the temperature deviation vector and unbalance mass vector.