• Title/Summary/Keyword: Thermal Barrier Coatings

Search Result 116, Processing Time 0.028 seconds

An Evaluation on High Temperature Oxidation Resistance of EB-PVD Thermal Barrier Coatings (전자빔 증착법에 의한 열차폐코팅의 고온 내산화성 평가)

  • Kim, Jong-H.;Jeong, Se-I.;Lee, Ku-H.;Lee, Eui-Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.147-152
    • /
    • 2006
  • Failure mechanisms of electron beam physical vapor deposited thermal barrier coatings(EB-PVD TBCs) that occur during thermal cyclic oxidation were investigated. The investigations include microstructural degradation of NiCrAIY bond coat, thermally grown oxides(TGOs) along the ceramic top coat-substrate interface and fracture path within TBCs. The microstructural degradation of the bond coat during cyclic oxidation created Al depleted zones, resulting in reduction of NiAl and ${\gamma}$-Ni solid solution phase. It was observed that the fracture took placed primarily within the TGOs or at the interfaces between TGOs and bond coat.

Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying (분무건조 및 대기 플라즈마 용사에 의한 지르코니아 열차폐 코팅재의 제조 및 평가)

  • Kim, Chul;Heo, Yong Suk;Kim, Tae Woo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • In this study, we prepared yttria stabilized zirconia granules for thermal barrier coatings using a spray drying process. First, we characterized the properties of granules such as flow rate and packing density for utilizing the air plasma spray process. The flow rate and packing density data showed 0.732 g/sec and 2.14 $g/cm^3$, respectively, when we used larger and denser particles, which are better than hollow granules or smaller spherical granules. Second, we chose larger, spherical granules fabricated in alcohol solvent as starting powders and sprayed it on the bondcoat/nimonic alloy by an atmospheric plasma spray process varying the process parameters, the feeding rate, gun speed and spray distance. Finally, we evaluated representative thermal and mechanical characteristics. The thermal expansion coefficients of the coatings were $11{\sim}12.7{\times}10^{-6}/^{\circ}C$ and the indentation stress measured was 2.5 GPa at 0.15 of indentation strain.

Changes in the Mechanical Behavior of Thermal Barrier Coatings Caused by Thermal Shock (열충격에 의한 열차폐 코팅재의 기계적 거동 변화)

  • Jang, Bin;Lee, Kee Sung;Kim, Tae Woo;Kim, Chul
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This study investigates changes in the mechanical behaviors, especially hardness and indentation load-displacement curves, of thermal barrier coatings (TBCs) brought about by thermal shock. The TBCs on the Nickel-based bondcoat/superalloy was prepared with diameters of 25.4 mm and $600{\mu}m$ thickness. The results of thermal shock cycling test from $1100^{\circ}C$ of the highest temperature indicate that the thermal shock do not influence on the mechanical behavior, but a continuous decrease in porosity and increase in hardness were observed after 1200 thermal shock cycles; these changes are believed to be due to sintering of thermal barrier coating materials. The results that no degradation in the indentation load-displacement curves indicate that the coating shows good thermal shock resistance up to 1200 cycles at $1100^{\circ}C$ in air.

Characteristics of Al2O3, Cr2O3, WC-Ni, and Chromizing Surface Coatingsunder Environment with HighTemperature, Wear, and Corrosion (고온, 마모 및 부식환경에 적용가능한 Al2O3, Cr2O3, WC-Ni 및 크로마이징 코팅층의 기계적 특성 평가)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.895-900
    • /
    • 2013
  • Several plasma spray and metallurgical surface coatings such as $Al_2O_3$, $Cr_2O_3$, WC-Ni, and chromizing coating have been examined for their application in environments with high temperature, wear, and corrosion. The chromizing coating is different from others coatings in the manufacturing process the surface. These coatings' characteristics were tested experimentally, and the results were compared. WC-Ni shows good performance against thermal barrier, wear, and corrosion and is one of the best candidates for the environment considered herein. These coatings were studied for their application in the steel manufacturing industry. The most commonly required functions in this industry are thermal and wear resistance.

The heat treatment characteristics of plasma sprayed ZrO$_2$-Y$_2$O$_3$ coatings (플라즈마 용해법에 의한 ZrO$_2$-Y$_2$O$_3$ 피복층의 가열처리효과)

  • 정병근;김한삼;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 1994
  • The plasma spray process was used to deposit coatings of $ZrO_2$-8wt%Y2O3 powders on mild steel sub-strate, and the characteristics of as-deposited and heat treated coatings have been investigated. Particulary, the variations of porosity, wear resistance, thermal barrier and thermal shock resistance in $ZrO_2$-8wt% $Y_2O_3$coatings after heat treatment under vacuum circumstance have been investigated. The porosity of the coating layer was increased with increased spray distance. In the case of the arc current of 450A and at the spray distance of 50mm, it was obtained the lowest amount of porosity. After heat treatment, the amount of porosity was found to be decreased, and the wear resistance, microhardness and thermal shock resistance were im-proved. However, the thermal barrier was decreased.

  • PDF

Experimental and numerical investigation on gas turbine blade with the application of thermal barrier coatings

  • Aabid, Abdul;Jyothi, Jyothi;Zayan, Jalal Mohammed;Khan, Sher Afghan
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.275-293
    • /
    • 2019
  • The engine parts material used in gas turbines (GTs) should be resistant to high-temperature variations. Thermal barrier coatings (TBCs) for gas turbine blades are found to have a significant effect on prolonging the life cycle of turbine blades by providing additional heat resistance. This work is to study the performance of TBCs on the high-temperature environment of the turbine blades. It is understood that this coating will increase the lifecycles of blade parts and decrease maintainence and repair costs. Experiments were performed on the gas turbine blade to see the effect of TBCs in different combinations of materials through the air plasma method. Three-layered coatings using materials INCONEL 718 as base coating, NiCoCrAIY as middle coating, and La2Ce2O7 as the top coating was applied. Finite element analysis was performed using a two-dimensional method to optimize the suitable formulation of coatings on the blade. Temperature distributions for different combinations of coatings layers with different materials and thickness were studied. Additionally, three-dimensional thermal stress analysis was performed on the blade with a commercial code. Results on the effect of TBCs shows a significant improvement in thermal resistance compared to the uncoated gas turbine blade.

Thermal Fatigue Behavior of Thermal Barrier Coatings by Air Plasma Spray (대기플라즈마 용사법으로 제조된 열차폐코팅의 열피로특성 평가)

  • Lee, Han-sang;Kim, Eui-hyun;Lee, Jung-hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.363-369
    • /
    • 2008
  • Effects of top coat morphology and thickness on thermal fatigue behavior of thermal barrier coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and $300{\mu}m$ respectively. The thickness of top coat was about $700{\mu}m$ in the perpendicular cracked specimen (PCS). Under thermal fatigue condition at $1,100^{\circ}C$, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and thermally grown oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

A Study on the Residual Stresses of Ceramic Coating (세라믹코팅재의 잔류응력에 대한 연구)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.19-23
    • /
    • 2007
  • The aim of this study was to determine residual stresses in thermal barrier coatings(TBCs) by isothermal heating. Specimens were heated at the range of $1000{\sim}1600^{\circ}C$. A finite element method was used to determine the residual stresses. Finite element coupled heat transfer and elastic-plastic thermal stress analysis using a general purpose commercial FEM software ABAQUS. I obtained the stresses were not affected below the temperature of $1400^{\circ}C$ but affected over that of temperature.

Mechanical Properties of Zirconia-Based Ceramic Materials for Thermal Barrier Coating (열차폐 코팅을 위한 지르코니아계 세라믹 소재의 기계적 특성)

  • Jung, Kyu-Ick;Kim, Tae-Woo;Paik, Ungyu;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.498-503
    • /
    • 2006
  • A gas turbine blade with thermal barrier ceramic coating is operated at high temperature to increase engine efficiency. Recently, thermal barrier characteristics have been improved by advanced coating technology through microstructure control and increase of adhesion force of the coating layer. More advanced coating materials, rare earth zircon ate ceramics have been studied for replacing YSZ coatings as thermal barrier coatings. In this study, $La_2O_3,\;HfO_2,\;CeO_2,\;Gd_2O_3$ and pure or yttria stabilized zirconia were prepared. Microstructure analysis and the evaluation of mechanical properties such as Hertzian indentation and hardness test were performed.

Failure of Ceramic Coatings Subjected to Thermal Cyclings (열피로에 의한 세라믹 코팅재의 파손)

  • Han Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.1-5
    • /
    • 2005
  • An experimental study was conducted to develop an understanding of failure of ceramic coating when subjected to a thermal cycling. Number of cycles to failure were decreased as the coating thickness and the oxide of bond coat were increased. Using the finite element method, an analysis of stress distribution in ceramic coatings was performed. Radial compressive stress was increased in the top/bond coat interface with increasing coating thickness and oxide of bond coat.