Browse > Article
http://dx.doi.org/10.12989/amr.2019.8.4.275

Experimental and numerical investigation on gas turbine blade with the application of thermal barrier coatings  

Aabid, Abdul (Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia)
Jyothi, Jyothi (Department of Aeronautical Engineering, Faculty of Engineering and Technology, Khaja Bandanawaz University)
Zayan, Jalal Mohammed (Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia)
Khan, Sher Afghan (Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia)
Publication Information
Advances in materials Research / v.8, no.4, 2019 , pp. 275-293 More about this Journal
Abstract
The engine parts material used in gas turbines (GTs) should be resistant to high-temperature variations. Thermal barrier coatings (TBCs) for gas turbine blades are found to have a significant effect on prolonging the life cycle of turbine blades by providing additional heat resistance. This work is to study the performance of TBCs on the high-temperature environment of the turbine blades. It is understood that this coating will increase the lifecycles of blade parts and decrease maintainence and repair costs. Experiments were performed on the gas turbine blade to see the effect of TBCs in different combinations of materials through the air plasma method. Three-layered coatings using materials INCONEL 718 as base coating, NiCoCrAIY as middle coating, and La2Ce2O7 as the top coating was applied. Finite element analysis was performed using a two-dimensional method to optimize the suitable formulation of coatings on the blade. Temperature distributions for different combinations of coatings layers with different materials and thickness were studied. Additionally, three-dimensional thermal stress analysis was performed on the blade with a commercial code. Results on the effect of TBCs shows a significant improvement in thermal resistance compared to the uncoated gas turbine blade.
Keywords
materials; turbine blade; coatings; thermal analysis; finite element method; plasma spray;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tang, W.Z., Yang, L., Zhu, W., Zhou, Y.C., Guo, J.W. and Lu, C. (2015), "Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure tbcs by a fluid-solid coupling method", J. Mater. Sci. Technol., 32, 452-458. https://doi.org/10.1016/j.jmst.2016.03.009   DOI
2 Umair, S.M., Alrobaian, A.A. and Khan, S.A. (2018), "Numerical investigation of critical range for the occurrence of secondary peaks in the nusselt distribution curve", CFD Letters, 1(1), 12-27.
3 Vardelle, A., Moreau, C., Akedo, J., Ashrafizadeh, H., Berndt, C.C., Berghaus, J.O., Boulos, M., Brogan, J., Bourtsalas, A.C., Dolatabadi, A. and Dorfman, M. (2016), "The 2016 Thermal spray roadmap", J. Thermal Spray Technol., 25(8), 1376-1440. https://doi.org/10.1007/s11666-016-0473-x   DOI
4 Zhao, S., Zhang, C., Wu, N. and Wang, H. (2011), "Quality evaluation for air plasma sprays thermal barrier coatings with pulsed thermography", Progress in Natural Science: Mater. Int., 21(4), 301-306. https://doi.org/10.1016/S1002-0071(12)60061-6   DOI
5 Zhu, W., Cai, M., Yang, L., Guo, J.W., Zhou, Y.C. and Lu, C. (2015), "The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings", Surf. Coatings Technol., 276, 160-167. https://doi.org/10.1016/j.surfcoat.2015.06.061   DOI
6 Zhu, W., Wang, J.W., Yang, L., Zhou, Y.C., Wei, Y.G. and Wu, R.T. (2017), "Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings", Surf. Coatings Technol., 315, 443-453. https://doi.org/10.1016/j.surfcoat.2017.03.012   DOI
7 Bacos, M.P., Dorvaux, J.M., Lavigne, O., Mevrel, R., Poulain, M., Rio, C. and Vidal-Setif, M.H. (2011), "Performance and degradation mechanisms of thermal barrier coatings for turbine blades : A review of onera activities", J. Aerosp. Lab, 3, 1-11.
8 Aabid, A. and Khan, S.A. (2018), "Optimization of heat transfer on thermal barrier coated gas turbine blade related", Proceedings of IOP Conference Series: Materials Science and Engineering, 370, 1-9. https://doi.org/10.1088/1757-899X/370/1/012022
9 Aktaa, J., Sfar, K. and Munz, D. (2005), "Assessment of TBC systems failure mechanisms using a fracture mechanics approach", Acta Materialia, 53(16), 4399-4413. https://doi.org/10.1016/j.actamat.2005.06.003   DOI
10 Al Ali, A.R. and Janajreh, I. (2015), "Numerical simulation of turbine blade cooling via jet impingement", Energy Procedia, 75, 3220-3229. https://doi.org/10.1016/j.egypro.2015.07.683   DOI
11 Dautov, S.S., Shornikov, P.G., Rezyapova, L.R. and Akhatov, I.S. (2019), "Increasing thermal and mechanical properties of thermal barrier coatings by suspension plasma spraying technology", J. Phys.: Conference Series, 1281, 1-4. https://doi.org/10.1088/1742-6596/1281/1/012008
12 Bakan, E. and Vassen, R. (2017), "Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties", J. Thermal Spray Technol., 26(6), 992-1010. https://doi.org/10.1007/s11666-017-0597-7   DOI
13 Bialas, M. (2008), "Finite element analysis of stress distribution in thermal barrier coatings", Surf. Coatings Technol., 202(24), 6002-6010. https://doi.org/10.1016/j.surfcoat.2008.06.178   DOI
14 Choi, S.R., Hutchinson, J.W. and Evans, A.G. (1999), "Delamination of multilayer thermal barrier coatings", Mech. Mater., 31(7), 431-447. https://doi.org/10.1016/S0167-6636(99)00016-2   DOI
15 Doleker, K.M., Ozgurluk, Y. and Karaoglanli, A.C. (2018), "Isothermal oxidation and thermal cyclic behaviors of YSZ and double-layered YSZ/La2Zr2O7 thermal barrier coatings (TBCs)", Surf. Coatings Technol., 351, 78-88. https://doi.org/10.1016/j.surfcoat.2018.07.069   DOI
16 Gentleman, M.M. and Clarke, D.R. (2004), "Concepts for luminescence sensing of thermal barrier coatings", Surf. Coatings Technol., 188-189, 93-100. https://doi.org/10.1016/j.surfcoat.2004.08.005   DOI
17 Hermosilla, U., Jones, I.A., Hyde, T.H., Thomson, R.C. and Karunaratne, M.S.A. (2009), "Finite element modeling of the development of stresses in thermal barrier coatings", Proceedings of 2009 International Conference on Sustainable Power Generation and Supply, 1-7. https://doi.org/10.1109/SUPERGEN.2009.5348018
18 Kakuee, O., Fathollahi, V., Oliaiy, P., Agha-Aligol, D. and Lamehi-Rachti, M. (2015), "Ion beam analysis of gas turbine blades: Evaluation of refurbishment quality", Bull. Mater. Sci., 38(2), 511-516. https://doi.org/https://doi.org/10.1007/s12034-015-0867-2   DOI
19 Hernandez, M.T., Karlsson, A.M. and Bartsch, M. (2009), "On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings", Surf. Coatings Technol., 203(23), 3549-3558. https://doi.org/10.1016/j.surfcoat.2009.05.018   DOI
20 Hwang, S., Son, C., Seo, D., Rhee, D.-H. and Cha, B. (2016), "Comparative study on steady and unsteady conjugate heat transfer analysis of a high-pressure turbine blade", Appl. Thermal Eng., 99, 765-775. https://doi.org/10.1016/j.applthermaleng.2015.12.139   DOI
21 Karaoglanli, A.C., Turk, A. and Ozdemir, I. (2016), "Isothermal oxidation behavior and kinetics of thermal barrier coatings produced by cold gas dynamic spray technique", Surf. Coatings Technol., 318, 72-81. https://doi.org/10.1016/j.surfcoat.2016.12.021   DOI
22 Kulczyk-Malecka, J., Zhang, X., Carr, J., Carabat, A.L., Sloof, W.G., Van Der Zwaag, S., Cernuschi, F., Nozahic, F., Monceau, D., Estournes, C. and Withers, P.J. (2016), "Influence of embedded MoSi2 particles on the high-temperature thermal conductivity of SPS produced yttria-stabilised zirconia model thermal barrier coatings", Surf. Coatings Technol., 308, 31-39. https://doi.org/10.1016/j.surfcoat.2016.07.113   DOI
23 Kumar, V. and Kandasubramanian, B. (2016), "Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications", Particuology, 27, 1-28. https://doi.org/10.1016/j.partic.2016.01.007   DOI
24 Kyaw, S., Jones, A., Jepson, M.A.E., Hyde, T. and Thomson, R.C. (2017), "Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings", Mater. Des., 125, 189-204. https://doi.org/10.1016/j.matdes.2017.03.067   DOI
25 Mao, J., Liu, M., Deng, C.G., Deng, C.M., Zhou, K.S. and Deng, Z.Q. (2017), "Preparation and distribution analysis of thermal barrier coatings deposited on multiple vanes by plasma spray-physical vapor deposition technology", J. Eng. Mater. Technol., Transactions of the ASME, 139(4), 1-7. https://doi.org/10.1115/1.4036584
26 Lee, J.-M., Song, H., Kim, Y., Koo, J.-M. and Seok, C.-S. (2015), "Evaluation of thermal gradient mechanical fatigue characteristics of the thermal barrier coating, considering the effects of thermally grown oxide", Int. J. Precision Eng. Manuf., 16(7), 1675-1679. https://doi.org/10.1007/s12541-015-0220-0   DOI
27 Li, G.-R., Yang, G.-J., Li, C.-X. and Li, C.-J. (2017), "A comprehensive mechanism for the sintering of plasma-sprayed nanostructured thermal barrier coatings", Ceram. Int., 45(12), 9600-9615. https://doi.org/10.1016/j.ceramint.2017.04.083
28 Liu, J.H., Liu, Y.B., He, X. and Liu, L. (2016), "Study on TBCs insulation characteristics of a turbine blade under serving conditions", Case Studies in Thermal Engineering, 8, 250-259. https://doi.org/10.1016/j.csite.2016.08.004   DOI
29 Ma, X. and Ruggiero, P. (2018), "Practical aspects of suspension plasma spray for thermal barrier coating on potential gas turbine components", J. Thermal Spray Technol., 27(4), 591-602. https://doi.org/10.1007/s11666-018-0700-8   DOI
30 Mafeed, M.P., Salman Ali, M., Prabin, C., Ramis, M.K., Ali Baig, M.A. and Khan, S.A. (2012), "Optimum length for pin fins used in electronic cooling", Appl. Mech. Mater., 110-116, 1667-1673. https://doi.org/10.4028/www.scientific.net/AMM.110-116.1667   DOI
31 Miller, R.A. (1997), "Thermal barrier coatings for aircraft engines: history and directions", J. Thermal Spray Technol., 6(1), 35-42. https://doi.org/10.1007/BF02646310   DOI
32 Moon, H., Kim, K.M., Jeon, Y.H., Shin, S., Park, J.S. and Cho, H.H. (2015), "Effect of thermal stress on creep lifetime for a gas turbine combustion liner", Eng. Fail. Anal., 47, 34-40. https://doi.org/10.1016/j.engfailanal.2014.10.004   DOI
33 Moskalenko, A.B. and Kozhevnikov, A.I. (2016), "Estimation of gas turbine blades cooling efficiency", Procedia Eng., 150, 61-67. https://doi.org/10.1016/j.proeng.2016.06.716   DOI
34 Ogiriki, E.A., Li, Y.G., Nikolaidis, T., Isaiah, T.E. and Sule, G. (2015), "Effect of fouling, thermal barrier coating degradation, and film cooling holes blockage on gas turbine engine creep life", Procedia CIRP, 38, 228-233. https://doi.org/10.1016/j.procir.2015.07.017   DOI
35 Padture, N.P., Gell, M. and Jordan, E.H. (2002), "Thermal barrier coatings for gas-turbine engine applications", Review: Mater. Sci., 296(5566), 280-284. https://doi.org/10.1126/science.1068609
36 Sadowski, T. and Pietras, D. (2016), "Heat transfer process in jet turbine blade with functionally graded thermal barrier coating", Solid State Phenomena, 254, 170-175. https://doi.org/10.4028/www.scientific.net/SSP.254.170   DOI
37 Rosler, J., Baker, M. and Volgmann, M. (2001), "Stress state and failure mechanisms of thermal barrier coatings: Role of creep in thermally grown oxide", Acta Materialia, 49(18), 3659-3670. https://doi.org/10.1016/S1359-6454(01)00283-X   DOI
38 Rousseau, F., Quinsac, A., Morvan, D., Bacos, M.P., Lavigne, O., Rio, C., Guinard, C. and Chevillard, B. (2019), "A new injection system for spraying liquid nitrates in a low power plasma reactor: Application to local repair of the damaged thermal barrier coating", Surf. Coatings Technol., 357, 195-203. https://doi.org/10.1016/j.surfcoat.2018.09.069   DOI
39 Sadowski, T. and Golewski, P. (2012), "The analysis of heat transfer and thermal stresses in thermal barrier coatings under exploitation", Defect Diffusion Forum, 326-328, 530-535. https://doi.org/10.4028/www.scientific.net/DDF.326-328.530   DOI
40 Saif, M., Mullick, P. and Imam, A. (2019), "Analysis and structural design of various turbine blades under variable conditions : A review", Adv. Mater. Res., 8(1), 11-24. https://doi.org/https://doi.org/10.12989/amr.2019.8.1.011   DOI
41 Subramani, P., Padgelwar, N., Shetty, S., Pandit, A., Sreenivasulu, V., Arivazhagan, N., Duoli, W.U. and Manikandan, M. (2019), "Hot corrosion studies on detonation-gun-sprayed NiCrAlY and 80Ni-20Cr coatings on alloy X22CrMoV12-1 at $600^{\circ}C$", Transact. Indian Inst. Metals, 20-23. https://doi.org/10.1007/s12666-019-01567-6
42 Stecura, S. (1979), "Effects of compositional change on the performance of a thermal barrier coating system", Proceedings of the 3rd Annual Conference on Composite and Advanced Materials, Merritt Island, FL, USA, January.