• Title/Summary/Keyword: Therapeutic flow

Search Result 324, Processing Time 0.02 seconds

The Change of Blood Flow Velocity of Radial Artery after Linear Polarized Infrared Light Radiation near the Stellate Ganglion: Comparing with the Stellate Ganglion Block (성상신경절 부위의 직선편광 근적외선 조사 후 요골동맥에서의 혈류속도의 변화: 성상신경절 차단술과의 비교)

  • Han, Soung-Moon;Lee, Sang-Chul
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.37-40
    • /
    • 2001
  • Background: It had been reported by authors that linear polarized infrared light radiation (Superizer: SL) near the stellate ganglion had a similar effect on the change of skin temperature of hand compared with the stellate ganglion block (SGB). We hypothesized that this was due to dilatation of vessels and an increased blood flow. The aim of this study was to measure the velocity of blood flow in peripheral vessels after linear polarized infrared light radiation near the stellate ganglion and to compare the effect of SL with that of SGB using local anesthetics. Methods: Forty patients whose clinical criteria were matched for the symptoms of SGB were selected for study. We radiated the stellate ganglion by linear polarized infrared light radiation and measured the blood flow of radial artery using Ultrasound Doppler blood flow meter before and after 10, 20 and 30 minutes post-radiation. After 3 days, SGB was performed using 8 ml of 1% mepivacaine to the same patient, and the radial artery blood flow was measured in the same manner. Results: The blood flow velocity was increased by 40% and 27% at 10 min and 20 min after SL and by 42% and 41% at 10 min and 20 min after SGB. However, there was no statistically significant difference in blood flow velocity between SGL and SGB. Conclusions: We could conclude that linear polarized radiation is a clinically simple and useful noninvasive therapeutic tool in clinical area.

  • PDF

Ursodeoxycholic Acid (UDCA) Exerts Anti- Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

  • Chung, Jihwa;Kim, Kyoung Hwa;Lee, Seok Cheol;An, Shung Hyun;Kwon, Kihwan
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.851-858
    • /
    • 2015
  • Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

Usefulness of cyclic thermal therapy and red blood cell scintigraphy in patients with chemotherapy-induced peripheral neuropathy

  • Kim, Minjoo;Kim, Eun-Mi;Oh, Phil-Sun;Lim, Seok Tae;Sohn, Myung-Hee;Song, Eun-Kee;Park, Keon Uk;Kim, Jin Young;Won, Kyoung Sook;Jeong, Hwan-Jeong
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.427-436
    • /
    • 2021
  • Background: Pharmacological and non-pharmacological therapies have been used to treat patients with chemotherapy-induced peripheral neuropathy (CIPN). However, the effect of therapies in cancer patients has yet to be investigated comprehensively. We hypothesized that cyclic thermal therapy would improve blood flow and microcirculation and improve the symptoms driven by CIPN. Methods: The criteria of assessment were blood volume in region of interest (ROI) in the images, and European Organization for Research and Treatment of Cancer-Quality of Life Questionnaire-Chemotherapy-Induced Peripheral Neuropathy 20 questionnaire scores. The blood volume was quantified by using red blood cell (RBC) scintigraphy. All patients were treated 10 times during 10 days. The thermal stimulations, between 15° and 41°, were repeatedly delivered to the patient's hands. Results: The total score of the questionnaires, the score of questions related to the upper limbs, the score of questions closely related to the upper limbs, and the score excluding the upper limbs questions was decreased. The blood volume was decreased, and the variance of blood volume was decreased. During cooling stimulation, the blood volume was decreased, and its variance was decreased. During warming stimulation, the blood volume was decreased, and its variance was decreased. Conclusions: We suggest that cyclic thermal therapy is useful to alleviate CIPN symptoms by blood circulation improvement. RBC scintigraphy can provide the quantitative information on blood volume under certain conditions such as stress, as well as rest, in peripheral tissue.

A Novel Therapeutic Effect of a New Variant of CTLA4-Ig with Four Antennas That Are Terminally Capped with Sialic Acid in the CTLA4 Region

  • Piao, Yongwei;Yun, So Yoon;Kim, Hee Soo;Park, Bo Kyung;Ha, Hae Chan;Fu, Zhicheng;Jang, Ji Min;Back, Moon Jung;Shin, In Chul;Won, Jong Hoon;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.529-539
    • /
    • 2022
  • Rheumatoid arthritis (RA) is a multifactorial immune-mediated disease, the pathogenesis of which involves different cell types. T-cell activation plays an important role in RA. Therefore, inhibiting T-cell activation is one of the current therapeutic strategies. Cytotoxic T-lymphocyte antigen 4-immunoglobulin (CTLA4-Ig), also known as abatacept, reduces cytokine secretion by inhibiting T-cell activation. To achieve a homeostatic therapeutic effect, CTLA4-Ig has to be administered repeatedly over several weeks, which limits its applicability in RA treatment. To overcome this limitation, we increased the number of sialic acid-capped antennas by genetically engineering the CTLA4 region to increase the therapeutic effect of CTLA4-Ig. N-acetylglucosaminyltransferase (GnT) and α2,6-sialyltransferase (α2,6-ST) were co-overexpressed in Chinese hamster ovary (CHO) cells to generate a highly sialylated CTLA4-Ig fusion protein, named ST6. The therapeutic and immunogenic effects of ST6 and CTLA4-Ig were compared. ST6 dose-dependently decreased paw edema in a mouse model of collagen-induced arthritis and reduced cytokine levels in a co-culture cell assay in a similar manner to CTLA4-Ig. ST6- and CTLA4-Ig-induced T cell-derived cytokines were examined in CD4 T cells isolated from peripheral blood mononuclear cells after cell killing through irradiation followed by flow- and magnetic-bead-assisted separation. Interestingly, compared to CTLA4-Ig, ST6 was substantially less immunogenic and more stable and durable. Our data suggest that ST6 can serve as a novel, less immunogenic therapeutic strategy for patients with RA.

Aptamers as Functional Nucleic Acids: in vitro Selection and Biotechnological Applications

  • You, Kyung-Man;Lee, Sang-Hyun;Aesul Im;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.64-75
    • /
    • 2003
  • Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids. nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer Selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.

Neurobiology and Neurobiomechanics for Neural Mobilization (신경가동성에 대한 신경생물학과 신경생역학적 이해)

  • Kim Jae-Hun;Yuk Goon-Chan;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Nervous system is clinically important, and involved in most disorders directly or indirectly. It could be injury and be a source of symptoms. Injury of central or peripheral nervous system injury may affect that mechanism and interrupt normal function. An understanding of the concepts of axonal transport is important for physical therapist who treat injury of nerves. Three connective tissue layers are the endoneurium, perineurium, epineurium. Each has its own special structural characteristics and functional properties. The blood supply to the nervous system is well equipped in all dynamic and static postures with intrinsic and extrinsic vasculation. After nerve injury, alternations in the ionic compression or pressures within this environment may interfere with blood flow and, consequently conduction and the flow of axoplasm. The cytoskeleton are not static. On the contrary, elements of the cytoskeleton are dynamically regulated and are very likely in continual motion. It permits neural mobility. There are different axonal transport systems within a single axon, of which two main flows have been identified : First, anterograde transport system, Secondly, retrograde transport system. The nervous system adapts lengthening in two basic ways. The one is that the development of tension or increased pressure within the tissues, increased intradural pressure. The other is movements that are gross movement and movement occurring intraneurally between the connective tissues and the neural tissues. In this article, we emphasize the biologic aspects of nervous system that influenced by therapeutic approaches. Although identified scientific information in basic science is utilized at clinic, we would attain the more therapeutic effects and develop the physical therapy science.

  • PDF

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.

Effects of Geopungjeseub-tang(Gufengchushi-tang) on the Changes of Cerebral Blood Flow in Rats (거풍제습탕이 뇌허혈이 유발된 백서의 뇌혈류 변화에 미치는 영향)

  • Hong, Seok;Jeon, Sang-Yun
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.596-604
    • /
    • 2005
  • Objectives : Geopungjeseub-tang(Gufengchushi-tang) has been used in oriental medicine for many centuries as a therapeutic agent for hemiplegia caused by deficiency of qi(氣虛) and damp phlegm(濕痰). This study was performed to evaluate effects of Geopungjeseub-tang extract(GJT) on hemodynamics[regional cerebral blood flow(rCBF), pial arterial diameter(PAD), mean arterial blood pressure(MABP), heart rate(HR)] in normal rats and in rats with cerebral ischemia by middle cerebral artery(MCA) occlusion. Also, effects of adrenergic ${\beta}-receptor$, cyclooxygenase on response to GJT were evaluated. Methods : Laser-doppler flowmetry(LDF) measured changes of rCBF, MABP and HR. Video microscope and width analyzer measured changes in PAD. Results : rCBF and PAD increased after treatment with GJT(10mg/kg, i.v.) during the period of cerebral reperfusion, and pretreatment with indomethacin raised rCBF and PAD increased after treatment with GJT during the same period as above. Pretreatment with propranolol decreased rCBF, but increased after GJT treatment, but raised PAD increased after GJT treatment during this period of reperfusion. Conclusion : CR caused diverse responses were observed in rCBF and PAD after treatment with GJT. ACF action is mediated by adrenergic ${\beta}-receptor$ and cyclooxygenase. Result suggest that GJT has an anti-ischemic effect through the improvement of cerebral hemodynamics and has theraputic potential for cerebral apoplexy.

  • PDF

Effect of Kyungisan in on the Regional Cerebral Blood Flow and Mean Arterial Blood Pressure in Rats (균기산(勻氣散)이 흰쥐의 국소뇌혈류량 및 평균혈압에 미치는 효과)

  • Jung, Jong-An;Hong, Seok;Jun, Sang-Yun
    • Herbal Formula Science
    • /
    • v.15 no.2
    • /
    • pp.89-98
    • /
    • 2007
  • Kyungisan (KGS) has been used in oriental medicine for many centuries as a therapeutic agent for treatment of stroke caused by deficiency of qi(氣虛). This study was performed to evaluate effects of KGS extract on the regional cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) in rats. The result of this study were as follow ; 1. KGS significantly increased rCBF irrelevant to MABP in normal rats, 2. To prescribe KGS after pretreatment with indomethacin(IDN) decreased rCBF as compared with control group to administered only KGS in normal rats. But the change of MABP is not significantly as compared with control group. 3. To prescribe KGS after pretreatment with methylen blue( MTB) decreased MABP and rCBF as compared with control group to administered only KGS in normal rats. Especially, it significantly decreased rCBF. These results suggest that KGS increase rCBF by enlargement diameter of pial artery in brain. The active mechanism of KGS is related with prostaglandin activated by cyclooxygenase. So, I suggest that KGS has an anti-ischemic effect through the improvement of cerebral blood flow and can be used for stroke.

  • PDF

Stellate Ganglion Blocks in Atrophic Rhinitis (위축성 비염 환자에서 성상신경절 블록의 치료효과 -증례 보고-)

  • Kim, Seung-Jun;Lee, Woo-Chang;Chang, Won-Sok;Yoon, Duck-Mi
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.231-233
    • /
    • 2001
  • Atrophic rhinitis is characterized by mucosal atrophy, bony absorption, persistent fetid odor and resistance to medical and surgical treatment. Stellate ganglion block (SGB) can be used as a therapeutic modality by improving the regional blood flow through sympathetic blockade. We present a case of a 57 year-old male patient who had been treated unsuccessully for atrophic rhinitis for several years by surgical and conservative measures. The patient presented at our pain clinic with shoulder pain and received stellate ganglion block once or twice a week. He received more than 75 SGBs in addition to the routine conservative treatment for atrophic rhinitis. As the number of blocks performed increased, the patient demonstrated subjective symptom relief. We measured regional mucosal blood flow using a laser doppler flowmeter after the 28th, 63rd and 75th blocks. Nasal mucosal blood flow was improved by 4.9%, 28.8% and 36.3% respectively. We also were able to observe the recovery of mucosal atrophy to an almost normal level by nasal endoscopy. The patient is currently free of symptoms and is being followed up on an outpatient bases.

  • PDF