Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.071

A Novel Therapeutic Effect of a New Variant of CTLA4-Ig with Four Antennas That Are Terminally Capped with Sialic Acid in the CTLA4 Region  

Piao, Yongwei (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Yun, So Yoon (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Kim, Hee Soo (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Park, Bo Kyung (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Ha, Hae Chan (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Fu, Zhicheng (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Jang, Ji Min (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Back, Moon Jung (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Shin, In Chul (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Won, Jong Hoon (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Kim, Dae Kyong (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.30, no.6, 2022 , pp. 529-539 More about this Journal
Abstract
Rheumatoid arthritis (RA) is a multifactorial immune-mediated disease, the pathogenesis of which involves different cell types. T-cell activation plays an important role in RA. Therefore, inhibiting T-cell activation is one of the current therapeutic strategies. Cytotoxic T-lymphocyte antigen 4-immunoglobulin (CTLA4-Ig), also known as abatacept, reduces cytokine secretion by inhibiting T-cell activation. To achieve a homeostatic therapeutic effect, CTLA4-Ig has to be administered repeatedly over several weeks, which limits its applicability in RA treatment. To overcome this limitation, we increased the number of sialic acid-capped antennas by genetically engineering the CTLA4 region to increase the therapeutic effect of CTLA4-Ig. N-acetylglucosaminyltransferase (GnT) and α2,6-sialyltransferase (α2,6-ST) were co-overexpressed in Chinese hamster ovary (CHO) cells to generate a highly sialylated CTLA4-Ig fusion protein, named ST6. The therapeutic and immunogenic effects of ST6 and CTLA4-Ig were compared. ST6 dose-dependently decreased paw edema in a mouse model of collagen-induced arthritis and reduced cytokine levels in a co-culture cell assay in a similar manner to CTLA4-Ig. ST6- and CTLA4-Ig-induced T cell-derived cytokines were examined in CD4 T cells isolated from peripheral blood mononuclear cells after cell killing through irradiation followed by flow- and magnetic-bead-assisted separation. Interestingly, compared to CTLA4-Ig, ST6 was substantially less immunogenic and more stable and durable. Our data suggest that ST6 can serve as a novel, less immunogenic therapeutic strategy for patients with RA.
Keywords
Rheumatoid arthritis; CTLA-4Ig (abatacept); Cytokine; Immunogenicity; ST6; Inflammation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mustafa, G., Mahrosh, H. S. and Arif, R. (2021) In silico characterization of growth differentiation factors as inhibitors of TNF-alpha and IL-6 in immune-mediated inflammatory disease rheumatoid arthritis. Biomed. Res. Int. 2021, 5538535.
2 Ngantung, F. A., Miller, P. G., Brushett, F. R., Tang, G. L. and Wang, D. I. (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol. Bioeng. 95, 106-119.   DOI
3 Page, T. H., Turner, J. J., Brown, A. C., Timms, E. M., Inglis, J. J., Brennan, F. M., Foxwell, B. M., Ray, K. P. and Feldmann, M. (2010) Nonsteroidal anti-inflammatory drugs increase TNF production in rheumatoid synovial membrane cultures and whole blood. J. Immunol. 185, 3694-3701.   DOI
4 Rowshanravan, B., Halliday, N. and Sansom, D. M. (2018) CTLA-4: a moving target in immunotherapy. Blood 131, 58-67.   DOI
5 Ruderman, E. M. and Pope, R. M. (2005) The evolving clinical profile of abatacept (CTLA4-Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res. Ther. 7 Suppl 2, S21- S25.   DOI
6 Cutolo, M., Sulli, A. and Pincus, T. (2015) Circadian use of glucocorticoids in rheumatoid arthritis. Neuroimmunomodulation 22, 33-39.   DOI
7 Alegre, M. L., Frauwirth, K. A. and Thompson, C. B. (2001) T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1, 220-228.   DOI
8 Brand, D. D., Latham, K. A. and Rosloniec, E. F. (2007) Collagen-induced arthritis. Nat. Protoc. 2, 1269-1275.   DOI
9 Cui, J., Yu, J., Xu, H., Zou, Y., Zhang, H., Chen, S., Le, S., Zhao, J., Jiang, L., Xia, J. and Wu, J. (2020) Autophagy-lysosome inhibitor chloroquine prevents CTLA-4 degradation of T cells and attenuates acute rejection in murine skin and heart transplantation. Theranostics 10, 8051-8060.   DOI
10 Anderson, G. D., Hauser, S. D., Mcgarity, K. L., Bremer, M. E., Isakson, P. C. and Gregory, S. A. (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J. Clin. Invest. 97, 2672-2679.   DOI
11 Li, P., Zheng, Y. and Chen, X. (2017) Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front. Pharmacol. 8, 460.   DOI
12 Davignon, J. L., Rauwel, B., Degboe, Y., Constantin, A., Boyer, J. F., Kruglov, A. and Cantagrel, A. (2018) Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res. Ther. 20, 229.   DOI
13 Blumenauer, B., Cranney, A., Clinch, J. and Tugwell, P. (2003) Quality of life in patients with rheumatoid arthritis : which drugs might make a difference? Pharmacoeconomics 21, 927-940.   DOI
14 Bora de Oliveira, K., Spencer, D., Barton, C. and Agarwal, N. (2017) Site-specific monitoring of N-glycosylation profiles of a CTLA4-Fcfusion protein from the secretory pathway to the extracellular environment. Biotechnol. Bioeng. 114, 1550-1560.   DOI
15 Choy, E. H. and Panayi, G. S. (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344, 907-916.   DOI
16 Chung, C. Y., Wang, Q., Yang, S., Yin, B., Zhang, H. and Betenbaugh, M. (2017) Integrated genome and protein editing swaps alpha-2,6 sialylation for alpha-2,3 sialic acid on recombinant antibodies from CHO. Biotechnol. J. 12, 1600502.   DOI
17 Udalova, I. A., Mantovani, A. and Feldmann, M. (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 472-485.   DOI
18 Kitaori, T., Ito, H., Yoshitomi, H., Aoyama, T., Fujii, T., Mimori, T. and Nakamura, T. (2009) Severe erosive arthropathy requiring surgical treatments in systemic lupus erythematosus. Mod. Rheumatol. 19, 431-436.   DOI
19 Liu, R., Hao, D., Xu, W., Li, J., Li, X., Shen, D., Sheng, K., Zhao, L., Xu, W., Gao, Z., Zhao, X., Liu, Q. and Zhang, Y. (2019) β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm. Biol. 57, 161-168.   DOI
20 Cutolo, M. (1999) Macrophages as effectors of the immunoendocrinologic interactions in autoimmune rheumatic diseases. Ann. N. Y. Acad. Sci. 876, 32-41.   DOI
21 Cutolo, M. and Nadler, S. G. (2013) Advances in CTLA-4-Ig-mediated modulation of inflammatory cell and immune response activation in rheumatoid arthritis. Autoimmun. Rev. 12, 758-767.   DOI
22 Cutolo, M., Soldano, S., Gotelli, E., Montagna, P., Campitiello, R., Paolino, S., Pizzorni, C., Sulli, A., Smith, V. and Tardito, S. (2021) CTLA4-Ig treatment induces M1-M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients. Arthritis Res. Ther. 23, 306.   DOI
23 Walcher, L., Kistenmacher, A. K., Sommer, C., Bohlen, S., Ziemann, C., Dehmel, S., Braun, A., Tretbar, U. S., Kloss, S., Schambach, A., Morgan, M., Loffler, D., Kampf, C., Blumert, C., Reiche, K., Beckmann, J., Konig, U., Standfest, B., Thoma, M., Makert, G. R., Ulbert, S., Kossatz-Bohlert, U., Kohl, U., Dunkel, A. and Fricke, S. (2021) Low energy electron irradiation is a potent alternative to gamma irradiation for the inactivation of (CAR-)NK-92 cells in ATMP manufacturing. Front. Immunol. 12, 684052.   DOI
24 Weiss, P. and Ashwell, G. (1989) The asialoglycoprotein receptor: properties and modulation by ligand. Prog. Clin. Biol. Res. 300, 169-184.
25 Whitfield, S. J. C., Taylor, C., Risdall, J. E., Griffiths, G. D., Jones, J. T. A., Williamson, E. D., Rijpkema, S., Saraiva, L., Vessillier, S., Green, A. C. and Carter, A. J. (2017) Interference of the T cell and antigen-presenting cell costimulatory pathway using CTLA4-Ig (abatacept) prevents Staphylococcal enterotoxin B pathology. J. Immunol. 198, 3989-3998.   DOI
26 Guse, A. H., da Silva, C. P., Berg, I., Skapenko, A. L., Weber, K., Heyer, P., Hohenegger, M., Ashamu, G. A., Schulze-Koops, H., Potter, B. V. and Mayr, G. W. (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398, 70-73.   DOI
27 Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., Zhang, Y., Liu, Z., Fritz, J. M., Marsh, R., Husami, A., Kissell, D., Nortman, S., Chaturvedi, V., Haines, H., Young, L. R., Mo, J., Filipovich, A. H., Bleesing, J. J., Mustillo, P., Stephens, M., Rueda, C. M., Chougnet, C. A., Hoebe, K., Mcelwee, J., Hughes, J. D., Karakoc-Aydiner, E., Matthews, H. F., Price, S., Su, H. C., Rao, V. K., Lenardo, M. J. and Jordan, M. B. (2015) AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436-440.
28 Mccann, F. E., Perocheau, D. P., Ruspi, G., Blazek, K., Davies, M. L., Feldmann, M., Dean, J. L., Stoop, A. A. and Williams, R. O. (2014) Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis. Arthritis Rheumatol. 66, 2728-2738.   DOI
29 Mellor, A. L. and Munn, D. H. (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today 20, 469-473.   DOI
30 Goldring, S. R. and Gravallese, E. M. (2000) Pathogenesis of bone erosions in rheumatoid arthritis. Curr. Opin. Rheumatol. 12, 195-199.   DOI
31 Song, H. P., Li, X., Yu, R., Zeng, G., Yuan, Z. Y., Wang, W., Huang, H. Y. and Cai, X. (2015) Phenotypic characterization of type II collagen-induced arthritis in Wistar rats. Exp. Ther. Med. 10, 1483-1488.   DOI
32 Sharpe, A. H. (2009) Mechanisms of costimulation. Immunol. Rev. 229, 5-11.   DOI
33 Smith, K. A. (1988) Interleukin-2: inception, impact, and implications. Science 240, 1169-1176.   DOI
34 Smolen, J. S. and Maini, R. N. (2006) Interleukin-6: a new therapeutic target. Arthritis Res. Ther. 8 Suppl 2, S5.   DOI
35 Kaine, J., Gladstein, G., Strusberg, I., Robles, M., Louw, I., Gujrathi, S., Pappu, R., Delaet, I., Pans, M. and Ludivico, C. (2012) Evaluation of abatacept administered subcutaneously in adults with active rheumatoid arthritis: impact of withdrawal and reintroduction on immunogenicity, efficacy and safety (phase Iiib ALLOW study). Ann. Rheum. Dis. 71, 38-44.   DOI
36 Hoffman, R. W. (2001) T cells in the pathogenesis of systemic lupus erythematosus. Front. Biosci. 6, D1369- D1378.   DOI
37 Huang, J., Fu, X., Chen, X., Li, Z., Huang, Y. and Liang, C. (2021) Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 12, 686155.   DOI
38 Jing, Y., Qian, Y. and Li, Z. J. (2010) Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Biotechnol. Bioeng. 107, 488-496.   DOI
39 Kremer, J. M., Westhovens, R., Leon, M., Di Giorgio, E., Alten, R., Steinfeld, S., Russell, A., Dougados, M., Emery, P., Nuamah, I. F., Williams, G. R., Becker, J. C., Hagerty, D. T. and Moreland, L. W. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907-1915.   DOI
40 Lagana, B., Vinciguerra, M. and D'Amelio, R. (2009) Modulation of T-cell co-stimulation in rheumatoid arthritis: clinical experience with abatacept. Clin. Drug Investig. 29, 185-202.   DOI
41 Ozen, G., Pedro, S., Schumacher, R., Simon, T. A. and Michaud, K. (2019) Safety of abatacept compared with other biologic and conventional synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: data from an observational study. Arthritis Res. Ther. 21, 141.   DOI
42 Hamann, D., Baars, P. A., Rep, M. H., Hooibrink, B., Kerkhof-Garde, S. R., Klein, M. R. and van Lier, R. A. (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407-1418.   DOI
43 Jang, D. I., Lee, A. H., Shin, H. Y., Song, H. R., Park, J. H., Kang, T. B., Lee, S. R. and Yang, S. H. (2021) The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 22, 2719.   DOI
44 Lim, J. H., Cha, H. M., Park, H., Kim, H. H., Kim, D. I. (2017) Engineering human-like sialylation in CHO cells producing hCTLA4-Ig by overexpressing α2,6-sialyltransferase. KSBB J. 32, 193-198.   DOI
45 Furuzawa-Carballeda, J., Lima, G., Uribe-Uribe, N., Avila-Casado, C., Mancilla, E., Morales-Buenrostro, L. E., Perez-Garrido, J., Perez, M., Cardenas, G., Llorente, L. and Alberu, J. (2010) High levels of IDO-expressing CD16+ peripheral cells, and Tregs in graft biopsies from kidney transplant recipients under belatacept treatment. Transplant. Proc. 42, 3489-3496.   DOI
46 Szekanecza, Z. and Koch, A. E. (2005) Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol. 19, 289-295.   DOI
47 Tian, C., Bagley, J. and Iacomini, J. (2002) Expression of antigen on mature lymphocytes is required to induce T cell tolerance by gene therapy. J. Immunol. 169, 3771-3776.   DOI
48 Lim, J. H., Kim, J., Cha, H. M., Kang, S. H., Han, H. J., Ji, M., Cheon, S. H., Kang, M., Kim, H. H. and Kim, D. I. (2022) Establishment of a glycoengineered CHO cell line for enhancing antennary structure and sialylation of CTLA4-Ig. Enzyme Microb. Technol. 157, 110007.   DOI
49 Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A. and Locati, M. (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677-686.   DOI
50 Mills, C. D. (2015) Anatomy of a discovery: M1 and M2 macrophages. Front. Immunol. 6, 212.