• Title/Summary/Keyword: Theory of viscosity

Search Result 136, Processing Time 0.024 seconds

Optimum Hydraulic Oil Viscosity Based on Slipper Model Simulation for Swashplate Axial Piston Pumps/Motors

  • Kazama, Toshiharu
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.84-90
    • /
    • 2021
  • Viscosity of hydraulic oils decreases due to loss reduction and efficiency increase of fluid power systems. However, low viscosity is not always appropriate due to the induction of large leakage and small lubricity. Therefore, a detailed study on the optimum viscosity of hydraulic oils is necessary. In this study, based on the thermohydrodynamic lubrication theory, numerical simulation was conducted using the slipper model of swashplate-type axial piston pumps and motors. The viscosity grades' (VG) effects of oils on power losses are mainly discussed numerically in fluid film lubrication, including changes in temperature and viscosity. The simulation results reveal that the flow rate increases and the friction torque decreases as VG decreases. The film temperature and power loss were minimised for a specific oil with a VG. The minimum conditions regarding the temperature and loss were different and closed. Under various operating conditions, the film temperature and power loss were minimised, suggesting that an optimum hydraulic oil with a specific VG could be selected for given operating conditions of pressure and speed. Otherwise, a preferable operating condition must be established to determine a specific VG oil.

Rheological Characteristics of Magnetic $\gamma$-$Fe_{2}O_{3}$ and $CrO_2$ Particle Suspension (자성 $\gamma$-$Fe_{2}O_{3}$$CrO_2$ 입자 분산액의 유변특성 연구)

  • 김철암;이준석;최형진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 1999
  • Rheological characterization was examined for two different types of magenetic particle (rod-like $\gamma$-$Fe_{2}O_{3}$, $CrO_2$ )suspension in this study. The measured suspension viscosity (viscosity vs. concentration or shear rate) is used to obtain the dependence of viscous energy dissipation on the microstructural states of magnetic particle dispersions as well as the microstructural shape effects which are related to magnetic particle orientation. The empirical formulas from mean field theory and the Mooney equation are used to relate suspension viscosity to particle concentration. Intrinsic viscosities of these two different types of rod-like magnetic particle suspensions are found to exceed the prediction of hydrodynamic theory for dilute suspensions and support the existence of flocs containing significant amounts of immobilized suspending medium due to native attraction forces among particles in the microstructures.

  • PDF

Preliminary Study on the Relationship between Viscosity of Paste and Flowability of Mortar (페이스트 점도에 의한 모르타르 유동 특성에 관한 기초 연구)

  • Kim, Seung Hyun;Park, Chung-Hoon;Kim, Baek-Joong;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.269-270
    • /
    • 2012
  • In this study, for purpose of having a prediction on the flowability of mortar, we use the theory of excess paste, which gives a relationship between viscosity of paste versus water-binder ratio and mortar flow versus relative excess paste volume. Pastes and Mortars with four different mix proportions incorporating mineral admixtures were prepared. As a result of experiment, it seems that high flowability of mortar can be attributed to both lower viscosity of paste and increasing the volume of excess paste.

  • PDF

The Flocculation of Veegum Suspension by Electrolytes

  • Kwang Pyo Lee;Robert C. Mason;Ree Takiyue
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 1972
  • The effect on the apparent viscosity of 2 wt. % Veegum suspensions of different types of electrolytes and of different electrolyte concentrations was studied. Measurements were made with a Brookfield Synchro-Lectric Viscometer, using no.3 spindle at 30 R.P.M. at $24^{\circ}C$. As electriolyte concentration increased, the apparant viscosity was observed to increase to a maximum and then to decrease. Changes in viscosity were in general agreement with predicted results based on the Hofmeister sequence and the Schulze-Hardy rule. The observed electrolyte effect on the apparent viscosity was discussed in terms of the Verwey-Overbeek theory.

  • PDF

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin;Youn Jae Ryoun
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2005
  • A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening

  • Marzec, Ireneusz;Tejchman, Jacek;Winnicki, Andrzej
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.515-545
    • /
    • 2015
  • The paper presents results of FE simulations of the strain-rate sensitive concrete behaviour under dynamic loading at the macroscopic level. To take the loading velocity effect into account, viscosity, stress modifications and inertial effects were included into a rate-independent elasto-plastic formulation. In addition, a decrease of the material stiffness was considered for a very high loading velocity to simulate fragmentation. In order to ensure the mesh-independence and to properly reproduce strain localization in the entire range of loading velocities, a constitutive formulation was enhanced by a characteristic length of micro-structure using a non-local theory. Numerical results were compared with corresponding laboratory tests and available analytical formulae.

Polymer blends with a liquid crystalline polymer dispersed phase

  • Lee, Heon-Sang;Morton M. Denn
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.269-273
    • /
    • 1999
  • Immiscible polymer blends containing a liquid crystalline polymer dispersed phase can be described by existing blend theories when the dispersed-phase droplets are large relative to the orientation correlation length ("domain size") of the LCP. There does not appear to be an interfacial contribution to the linear viscoelastic properties of the blend from droplets smaller than the correlation length. Polyester blends, where interfacial interactions occur between the LCP and the matrix, exhibit a reduction in viscosity to below the viscosity of either component at low shear rates, where the droplet morphology is spherical. These anomalies cannot be explained in the context of existing theory.ng theory.

  • PDF

A Study on the THD Performance of a Large Tilting Pad Journal Bearing Including the Inlet Pressure Effect (선단압력을 고려한 대형 틸팅패드 저어널 베어링의 THD 성능에 관한 연구)

  • 하현천;김경웅;김영춘;김호종
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.30-38
    • /
    • 1994
  • The thermohydrodynamic(THD) performance of a large tilting pad journal bearing is investigated both theoretically and experimentally. The theory takes into account the three dimensional variation of lubricant viscosity and eddy viscosity, and the inlet pressure. Owing to the inlet pressure effect, the film pressure and load capacity are increased but the mixing temperature and bearing surface temperature are decreased. The continuous distribution of the film pressure and film thickness and the bearing surface temperature are measured along with the shaft speed and the bearing load, and they are compared with the theoretical results. The results obtained by the experiment are in good agreement with those by the theory including the inlet pressure effect. It is suggested that the three dimensional turbulent THD analysis including the inlet pressure effect is very useful to predict the performance of the large tilting pad journal bearing more accurately.

Derivation of Infiltration Equation in Multilayered Soil by Two Phase Flow Theory (2개류체(個流體) 흐름이론(理論)에 의한 여러층 흙에서의 침투능공식유도(浸透能公式誘導))

  • Sonu, Jung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1983
  • The Green-Ampt equation for infiltration has been intensively investigated by many researchers because of its simplicity and adequacy for fitting experimental data to theoretical one. The infiltration equation derived from the theory of two phase flow coincides with the Green-Ampt equation except the viscouse resistance correction factor. This approach clearly defines variables in the Green-Ampt equation and also encounters the effect of viscosity of two fluids. A new equation for infiltration into multilayered soil is derived from the theory of two phase flow and compared with conventional equation. The new equation shows lower infiltration rate than that of conventional one and it is believed that this caused from the inclusion of viscosity in the derivation.

  • PDF