• Title/Summary/Keyword: The maximum likelihood method

Search Result 997, Processing Time 0.025 seconds

Target Detection Performance in a Clutter Environment Based on the Generalized Likelihood Ratio Test (클러터 환경에서의 GLRT 기반 표적 탐지성능)

  • Suh, Jin-Bae;Chun, Joo-Hwan;Jung, Ji-Hyun;Kim, Jin-Uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.365-372
    • /
    • 2019
  • We propose a method to estimate unknown parameters(e.g., target amplitude and clutter parameters) in the generalized likelihood ratio test(GLRT) using maximum likelihood estimation and the Newton-Raphson method. When detecting targets in a clutter environ- ment, it is important to establish a modular model of clutter similar to the actual environment. These correlated clutter models can be generated using spherically invariant random vectors. We obtain the GLRT of the generated clutter model and check its detection probability using estimated parameters.

A Note on a New Two-Parameter Lifetime Distribution with Bathtub-Shaped Failure Rate Function

  • Wang, F.K.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 2002
  • This paper presents the methodology for obtaining point and interval estimating of the parameters of a new two-parameter distribution with multiple-censored and singly censored data (Type-I censoring or Type-II censoring) as well as complete data, using the maximum likelihood method. The basis is the likelihood expression for multiple-censored data. Furthermore, this model can be extended to a three-parameter distribution that is added a scale parameter. Then, the parameter estimation can be obtained by the graphical estimation on probability plot.

  • PDF

Maximum-likelihood Estimation of Radar Cross Section of a Swerling III Target (Swerling III 표적 RCS의 최대공산추정)

  • Jung, Young-Hun;Hong, Sun-Mog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.87-93
    • /
    • 2017
  • A maximum likelihood (ML) approach is presented for estimating the mean of radar cross section (RCS) of a Swerling III target and its numerical solution methods are discussed. The solution methods are based on an approximate expression for implementing the expectation maximization (EM) algorithm. The methods are evaluated and compared through Monte Carlo simulations in terms of estimation accuracy and computational efficiency to obtain a most efficient method for both Swerling I and Swerling III targets. The methods are also compared with a previously reported method based on heuristics.

Partitioning likelihood method in the analysis of non-monotone missing data

  • Kim Jae-Kwang
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.1-8
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Robin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method. A numerical example is also presented to illustrate the method.

  • PDF

Parameter Estimations in the Complementary Weibull Reliability Model

  • Sarhan Ammar M.;El-Gohary Awad
    • International Journal of Reliability and Applications
    • /
    • v.6 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • The Bayes estimators of the parameters included in the complementary Weibull reliability model are obtained. In the process of deriving Bayes estimators, the scale and shape parameters of the complementary Weibull distribution are considered to be independent random variables having prior exponential distributions. The maximum likelihood estimators of the desired parameters are derived. Further, the least square estimators are obtained in closed forms. Simulation study is made using Monte Carlo method to make a comparison among the obtained estimators. The comparison is made by computing the root mean squared errors associated to each point estimation. Based on the numerical study, the Bayes procedure seems better than the maximum likelihood and least square procedures in the sense of having smaller root mean squared errors.

  • PDF

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna;Lim, Ilhan;Song, Kanghyon;Kim, Jong-Guk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2204-2212
    • /
    • 2022
  • Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

Biased SNR Estimation using Pilot and Data Symbols in BPSK and QPSK Systems

  • Park, Chee-Hyun;Hong, Kwang-Seok;Nam, Sang-Won;Chang, Joon-Hyuk
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.583-591
    • /
    • 2014
  • In wireless communications, knowledge of the signal-to-noise ratio is required in diverse communication applications. In this paper, we derive the variance of the maximum likelihood estimator in the data-aided and non-data-aided schemes for determining the optimal shrinkage factor. The shrinkage factor is usually the constant that is multiplied by the unbiased estimate and it increases the bias slightly while considerably decreasing the variance so that the overall mean squared error decreases. The closed-form biased estimators for binary-phase-shift-keying and quadrature phase-shift-keying systems are then obtained. Simulation results show that the mean squared error of the proposed method is lower than that of the maximum likelihood method for low and moderate signal-to-noise ratio conditions.

Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type I progressive hybrid censoring

  • Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.469-486
    • /
    • 2020
  • Entropy is an important term in statistical mechanics that was originally defined in the second law of thermodynamics. In this paper, we consider the maximum likelihood estimation (MLE), maximum product spacings estimation (MPSE) and Bayesian estimation of the entropy of an inverse Weibull distribution (InW) under a generalized type I progressive hybrid censoring scheme (GePH). The MLE and MPSE of the entropy cannot be obtained in closed form; therefore, we propose using the Newton-Raphson algorithm to solve it. Further, the Bayesian estimators for the entropy of InW based on squared error loss function (SqL), precautionary loss function (PrL), general entropy loss function (GeL) and linex loss function (LiL) are derived. In addition, we derive the Lindley's approximate method (LiA) of the Bayesian estimates. Monte Carlo simulations are conducted to compare the results among MLE, MPSE, and Bayesian estimators. A real data set based on the GePH is also analyzed for illustrative purposes.

Mode-SVD-Based Maximum Likelihood Source Localization Using Subspace Approach

  • Park, Chee-Hyun;Hong, Kwang-Seok
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.684-689
    • /
    • 2012
  • A mode-singular-value-decomposition (SVD) maximum likelihood (ML) estimation procedure is proposed for the source localization problem under an additive measurement error model. In a practical situation, the noise variance is usually unknown. In this paper, we propose an algorithm that does not require the noise covariance matrix as a priori knowledge. In the proposed method, the weight is derived by the inverse of the noise magnitude square in the ML criterion. The performance of the proposed method outperforms that of the existing methods and approximates the Taylor-series ML and Cram$\acute{e}$r-Rao lower bound.

Parameters estimation of the generalized linear failure rate distribution using simulated annealing algorithm

  • Sarhan, Ammar M.;Karawia, A.A.
    • International Journal of Reliability and Applications
    • /
    • v.13 no.2
    • /
    • pp.91-104
    • /
    • 2012
  • Sarhan and Kundu (2009) introduced a new distribution named as the generalized linear failure rate distribution. This distribution generalizes several well known distributions. The probability density function of the generalized linear failure rate distribution can be right skewed or unimodal and its hazard function can be increasing, decreasing or bathtub shaped. This distribution can be used quite effectively to analyze lifetime data in place of linear failure rate, generalized exponential and generalized Rayleigh distributions. In this paper, we apply the simulated annealing algorithm to obtain the maximum likelihood point estimates of the parameters of the generalized linear failure rate distribution. Simulated annealing algorithm can not only find the global optimum; it is also less likely to fail because it is a very robust algorithm. The estimators obtained using simulated annealing algorithm have been compared with the corresponding traditional maximum likelihood estimators for their risks.

  • PDF