Browse > Article
http://dx.doi.org/10.1016/j.net.2021.12.021

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector  

Kim, Guna (Korea Institute of Radiological and Medical Sciences)
Lim, Ilhan (Korea Institute of Radiological and Medical Sciences)
Song, Kanghyon (Korea Institute of Radiological and Medical Sciences)
Kim, Jong-Guk (Korea Institute of Radiological and Medical Sciences)
Publication Information
Nuclear Engineering and Technology / v.54, no.6, 2022 , pp. 2204-2212 More about this Journal
Abstract
Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.
Keywords
Alpha particle; Alpha imaging detector; Super-spatial resolution method; Maximum-likelihood expectation; maximization; Monte Carlo simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F.B. Bouallegue, J.F. Crouzet, D. Mariano-Goulart, A heuristic statistical stopping rule for iterative reconstruction in emission tomography, Ann. Nucl. Med. 27 (2013) 84-95, https://doi.org/10.1007/s12149-012-0657-5.   DOI
2 Y. Morishita, T. Torii, H. Usami, H. Kikuchi, W. Utsugi, S. Takahira, Detection of alpha particle emitters originating from nuclear fuel inside reactor building of Fukushima Daiichi Nuclear Power Plant, Sci. Rep. 9 (2019) 1-14, https://doi.org/10.1038/s41598-018-36962-4.   DOI
3 S. Jan, et al., GATE : a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561, https://doi.org/10.1088/0031-9155/49/19/007.   DOI
4 B. Seitz, N. Campos Rivera, A.G. Stewart, Energy resolution and temperature dependence of Ce:GAGG coupled to 3 mm × 3 mm silicon photomultipliers, IEEE Trans. Nucl. Sci. 63 (2016) 503-508, https://doi.org/10.1109/TNS.2016.2535235.   DOI
5 T. Back, L. Jacobsson, The α-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of a-particles, J. Nucl. Med. 51 (2010) 1616-1623, https://doi.org/10.2967/jnumed.110.077578.   DOI
6 Y. Morishita, A. Di Fulvio, S.D. Clarke, K.J. Kearfott, S.A. Pozzi, A Organic scintillator-based alpha/beta detector for radiological decontamination, Nucl. Instrum. Methods Phys. Res. 935 (2019) 207-213, https://doi.org/10.1016/j.nima.2019.04.024.   DOI
7 Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, K. Toi, Y. Tsubota, Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities, Nucl. Instrum. Methods Phys. Res. A. 747 (2014) 81-86, https://doi.org/10.1016/j.nima.2013.12.052.   DOI
8 M.A. Unzueta, W. Mixter, Z. Croft, J. Joseph, B. Ludewigt, A. Persaud, Position sensitive alpha detector for an associated particle imaging system, AIP Conf. Proc. 2160 (2019), 050005, https://doi.org/10.1063/1.5127697.   DOI
9 J. Sand, S. Ihantola, K. Perajarvi, A. Nicholl, E. Hrnecek, H. Toivonen, J. Toivonen, Imaging of alpha emitters in a field environment, Nucl. Instrum. Methods Phys. Res. A. 782 (2015) 13-19, https://doi.org/10.1016/j.nima.2015.01.087.   DOI
10 R. Felix-Bautista, C. Hern andez-Hernandez, B.E. Zendejas-Leal, R. Fragoso, J.I. Golzarri, C. Vazquez-Lopez, G. Espinosa, Evolution of etched nuclear track profiles of alpha particles in CR-39 by atomic force microscopy, Radiat. Meas. 50 (2013) 197-200, https://doi.org/10.1016/j.radmeas.2013.01.002.   DOI
11 Y. Morishita, K. Izaki, J.H. Kaneko, S. Yamamoto, M. Higuchi, T. Torii, Development of a GdSiO (GPS) scintillator-based alpha imaging detector for rapid plutonium detection in high-radon environments, IEEE Trans. Nucl. Sci. 67 (2020) 2203-2208, https://doi.org/10.1109/TNS.2020.3014997.   DOI
12 A. Soluri, G. Atzeni, A. Ucci, T. Bellone, F. Cusanno, G. Rodilossi, R. Massari, New device based on the super spatial resolution (SSR) method, Nucl. Instrum. Methods Phys. Res. A. 728 (2013) 150-156, https://doi.org/10.1016/j.nima.2013.06.094.   DOI
13 R. Massari, A. D'Elia, A. Soluri, A. Soluri, Super Spatial Resolution (SSR) method for small animal SPECT imaging: a Monte Carlo study, Nucl. Instrum. Methods Phys. Res. A. 982 (2020) 164584, https://doi.org/10.1016/j.nima.2020.164584.   DOI
14 Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, N. Nemoto, Flexible alpha camera for detecting plutonium contamination, Radiat. Meas. 103 (2017) 33-38, https://doi.org/10.1016/j.radmeas.2017.04.009.   DOI
15 H.O. Anger, Scintillation camera, Rev. Sci. Instrum. 29 (1958) 27-33, https://doi.org/10.1063/1.1715998.   DOI
16 Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, K. Hoshi, T. Torii, Optimization of thickness of GAGG scintillator for detecting an alpha particle emitter in a field of high beta and gamma background, Radiat. Meas. 112 (2018) 1-5, https://doi.org/10.1016/j.radmeas.2018.02.003.   DOI
17 S. Yamamoto, J. Kataoka, T. Oshima, Y. Ogata, T. Watabe, H. Ikeda, Y. Kanai, J. Hatazawa, Development of a high resolution gamma camera system using finely grooved GAGG scintillator, Nucl. Instrum. Methods Phys. Res. A. 821 (2016) 28-33, https://doi.org/10.1016/j.nima.2016.03.060.   DOI
18 S. Yamamoto, K. Kamada, A. Yoshikawa, Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate, Sci. Rep. 8 (2018) 1-10, https://doi.org/10.1038/s41598-018-21500-z.   DOI
19 S. Yamamoto, Y. Hirano, K. Kamada, A. Yoshikawa, Development of an ultrahigh-resolution radiation real-time imaging system to observe trajectory of alpha particles in a scintillator, Radiat. Meas. 134 (2020) 106368, https://doi.org/10.1016/j.radmeas.2020.106368.   DOI
20 G. Trinci, R. Massari, M. Scandellari, F. Scopinaro, A. Soluri, Super Spatial Resolution (SSR) method for scintigraphic imaging, Nucl. Instrum. Methods Phys. Res. A. 626 (2011) 120-127, https://doi.org/10.1016/j.nima.2010.10.077.   DOI
21 Z. Wang, A.C. Bovik, A universal image quality index, IEEE Signal Process. Lett. 9 (2002) 81-84, https://doi.org/10.1109/97.995823.   DOI
22 B.W. Miller, S.H.L. Frost, S.L. Frayo, A.L. Kenoyer, E. Santos, J.C. Jones, D.J. Green, D.K. Hamlin, D.S. Wilbur, D.R. Fisher, J.J. Orozco, O.W. Press, J.M. Pagel, B.M. Sandmaier, Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera, Med. Phys. 42 (2015) 4094-4105, https://doi.org/10.1118/1.4921997.   DOI