• 제목/요약/키워드: The growth of solid particles

Search Result 70, Processing Time 0.024 seconds

Monte Carlo Simulation of Densification during Liquid-Phase Sintering

  • Lee, Jae Wook
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.288-294
    • /
    • 2016
  • The densification process during liquid-phase sintering was simulated by Monte Carlo simulation. The Potts model, which had been applied to coarsening during liquid-phase sintering, was modified to include vapor particles. The results of two- and threedimensional simulations showed a temporal decrease in porosity, in other words, densification, and an increase in the average size of pores. The results also showed growth of solid grains and the effect of wetting angle on microstructure.

Computational and Experimental Study of Grain Growth in WC-Co and WC-VC-Co Cemented Carbides

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.588-595
    • /
    • 2009
  • The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.

고액용융성장법을 이용한 YBCO 단결정 제조 (YBCO Bulk Superconductors Prepared by Solid-liquid Melt Growth)

  • 한상철;이정필;박병철;정년호;박병준;정세용;한영희;성태현
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.860-863
    • /
    • 2009
  • YBCO bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed modified powder melting process method, Solid-Liquid Melt Growth(SLMG), with $Y_2O_3$, $BaCuO_2$ and CuO mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the processing became to be simpler and cheaper than the current powder melting process. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been analyzed and the effect of Pt additive was studied. The different trapped magnetic field values of the several samples have been explained in the viewpoint of their microstructures. The fabrication of large-sized YBCO single domain has been conducted.

증착 박막의 비젖음에 의한 실리카 표면 위 은나노 입자형성 (Formation of Silver Nanoparticles on Silica by Solid-State Dewetting of Deposited Film)

  • 김정환;조철민;황소리;김재호;오용준
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.856-860
    • /
    • 2010
  • Silver nanoparticles were formed on silica substrates through thin film dewetting at high temperature. The microstructural and morphological evolution of the particles were characterized as a function of processing variables such as initial film thickness, annealing time, and temperature. Silver thin films were deposited onto the silica using a pulsed laser deposition system and annealed in reducing atmosphere to induce agglomeration of the films. The film thicknesses before dewetting were in the range of 5 to 25 nm. A noticeable agglomeration occurs with annealing at temperatures higher than $300^{\circ}C$, and higher annealing temperature increases particle size uniformity for the same film thickness sample. Average particle size linearly correlates to the film thickness, but it does not strongly depend on annealing temperature and time, although threshold temperature for complete dewetting increases with an increase of film thickness. Lower annealing temperature develops faceted surface morphology of the silver particles by enhancing the growth of the low index crystal plane of the particles.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Glycothermal Synthesis of Ultrafine ZnFe2O4 power

  • Bae, Dong-Sik;Han, Kyong-Sop;Park, Sang-Hael
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.497-501
    • /
    • 1996
  • The ZnFe2O4 powder were prepared under glycothermal conditions by precipitation from metal nitrates with aqueous potassium hydroxide. Ultrafine particles of the ZnFe2O4 were obtained at temperatures as low as 225-300$^{\circ}C$. The microstructure and phase of the ZnFe2O4 powder was studied by SEM and XRD. The properties of the powder were studied as a function of various parameters (reaction temperature, reaction time, solid loading). The average particle diameter of the ZnFe2O4 increased with increasing reaction temperature. After glycothermal treatment at 270$^{\circ}C$ for 8hrs., the average particle diameter of the ZnFe2O4 was about 50 nm.

  • PDF

RF 열플라즈마를 이용한 Y2O3:Eu3+ 적색 나노 형광체 분말 합성 (Synthesis and characterization of Y2O3 : Eu3+ red nano phosphor powders using RF thermal plasma)

  • 이승용;구상만;황광택;김진호;한규성
    • 한국결정성장학회지
    • /
    • 제25권6호
    • /
    • pp.272-279
    • /
    • 2015
  • $Y_2O_3:Eu^{3+}$는 우수한 적색 발광 특성을 가지고 있는 형광체로 최근 고화질 디스플레이에 대한 수요가 증가함에 따라 관련 연구가 활발히 진행되고 있다. 본 연구에서는 RF 열플라즈마 합성법과 고상법을 이용하여 $Y_2O_3:Eu^{3+}$ 적색 형광체를 합성하였으며, 합성 방법에 따른 $Y_2O_3:Eu^{3+}$ 적색 형광체의 결정 구조, 미세 구조, 발광 특성의 차이를 XRD, TEM, PL 분석을 통해 비교하였다. 고상법으로 합성된 $Y_2O_3:Eu^{3+}$ 적색 형광체의 입자는 약 $10{\sim}20{\mu}m$ 크기를 가지는 반면, RF 열플라즈마 합성법을 통해 합성된 적색 형광체는 반응부는 약 100 nm, 필터부는 약 30 nm의 크기를 갖는 나노 형광체로 확인되었다. 합성된 모든 분말들은 PL 측정결과 611 nm($^5D_0{\rightarrow}^7F_2$)에서 발광하는 것을 확인하였으며, 결정 크기와 입도가 증가할수록 PL intensity가 증가하였다. 또한, 추가 열처리 공정이 필요 없는 one-step 공정의 RF 열플라즈마 공정을 통해 합성된 $Y_2O_3:Eu^{3+}$ 적색 나노 형광체는 고상법으로 합성된 적색 형광체와 비슷한 발광 특성을 보이는 것을 확인할 수 있었다.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • 김광주;최두진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

열 산화를 이용한 TiO2 나노선의 성장에 미치는 O2/N2 가스비의 영향 (Effect of the O2/N2 Ratio on the Growth of TiO2 Nanowires via Thermal Oxidation)

  • 이근형
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.543-546
    • /
    • 2015
  • $TiO_2$ nanowires were grown by thermal oxidation of TiO powder in an oxygen and nitrogen gas environment at $1000^{\circ}C$. The ratio of $O_2$ to $N_2$ in an ambient gas was changed to investigate the effect of the gas ratio on the growth of $TiO_2$nanowires. The oxidation process was carried out at different $O_2$/$N_2$ ratios of 0/100, 25/75, 50/50 and 100/0. No nanowires were formed at $O_2$/$N_2$ ratios of less than 25/75. When the $O_2$/$N_2$ ratio was 50/50, nanowires started to form. As the gas ratio increased to 100/0, the diameter and length of the nanowires increased. The X-ray diffraction pattern showed that the nanowires were $TiO_2$ with a rutile crystallographic structure. In the XRD pattern, no peaks from the anatase and brookite structures of $TiO_2$were observed. The diameter of the nanowires decreased along the growth direction, and no catalytic particles were detected at the tips of the nanowires which suggests that the nanowires were grown with a vapor-solid growth mechanism.

Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System

  • Yadav, Narendra;Majhi, S.S.;Srivastava, P.K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3397-3406
    • /
    • 2012
  • Three types of spherulitic morphologies have been investigated in dual substrate mode of Belousov-Zhabotinsky (BZ) type reaction system. Prior to growth of spherulites, three distinct patterning behaviors have been observed sequentially during the reaction process. Initial and the early-phase of reaction showed the emergence of concentric ring-like wave patterns. A colloidal-state of reaction consists of numerous fine solid particles, which forms primarily some nucleation centers of dendritic characters. The nucleation centers were found to grow in sizes and shapes with the progress of reaction. It leads to growth of dendritic-like spherulitic crystal patterns. The resultant spherulites showed transitions in their morphologies, including sea-weeds and rhythmic spherulitic crystal patterns, by the effects substituted organic substrate and in the higher concentration of bromate-initiator respectively. The branching mechanism and crystal ordering of spherulitic textures were studied with help of optical microscope (OPM) and scanning electron microscope (SEM). Characteristics of crystal phases were also evaluated using X-ray diffraction (XRD) and differential thermal analysis (DTA). Results indicated that the compositions of reactants and crystal orderings were interrelated with morphological transitions of spherulites as illustrated and described.