Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.10.3397

Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System  

Yadav, Narendra (Department of Space Engineering & Rocketry, Birla Institute of Technology)
Majhi, S.S. (Department of Applied Chemistry, Birla Institute of Technology, Deoghar Campus)
Srivastava, P.K. (Department of Applied Chemistry, Birla Institute of Technology, Deoghar Campus)
Publication Information
Abstract
Three types of spherulitic morphologies have been investigated in dual substrate mode of Belousov-Zhabotinsky (BZ) type reaction system. Prior to growth of spherulites, three distinct patterning behaviors have been observed sequentially during the reaction process. Initial and the early-phase of reaction showed the emergence of concentric ring-like wave patterns. A colloidal-state of reaction consists of numerous fine solid particles, which forms primarily some nucleation centers of dendritic characters. The nucleation centers were found to grow in sizes and shapes with the progress of reaction. It leads to growth of dendritic-like spherulitic crystal patterns. The resultant spherulites showed transitions in their morphologies, including sea-weeds and rhythmic spherulitic crystal patterns, by the effects substituted organic substrate and in the higher concentration of bromate-initiator respectively. The branching mechanism and crystal ordering of spherulitic textures were studied with help of optical microscope (OPM) and scanning electron microscope (SEM). Characteristics of crystal phases were also evaluated using X-ray diffraction (XRD) and differential thermal analysis (DTA). Results indicated that the compositions of reactants and crystal orderings were interrelated with morphological transitions of spherulites as illustrated and described.
Keywords
Reaction-diffusion; Spherulites; Self-assembly; Inter face; Crystal ordering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Zhang, X.; Wang, G.; Liu, X.; Wu, H.; Fang, B. Cryst. Growth Des. 2008, 8, 1430.   DOI   ScienceOn
2 Xu, A. W.; Ma, Y.; Colfen, H. J. Mater. Chem. 2007, 17, 415.   DOI   ScienceOn
3 Anee, T. K.; Palanichamy, M.; Ashok, M. Mat. Lett. 2004, 58, 478.   DOI   ScienceOn
4 Marangoni, A. G.; Ollivon, M. Chem. Phys. Lett. 2007, 442, 360.   DOI   ScienceOn
5 Hashimoto, T. Bull. Chem. Soc. Jpn. 2005, 78, 1.   DOI   ScienceOn
6 Fukami, K.; Nakanishi, S.; Yamasaki, H.; Tada, T.; Sonoda, K.; Kamikawa, N.; Tsuji, N.; Sakaguchi, H.; Nakato, Y. J. Phys. Chem. C 2007, 111, 1150.   DOI   ScienceOn
7 Oaki, Y.; Imai, H. Cryst. Growth & Des. 2003, 3, 711.   DOI   ScienceOn
8 Epstein, I. R.; Pojman, J. A.; Steinbock, O. Chaos 2006, 16, 37101.   DOI   ScienceOn
9 Epstein, I. R.; Showalter, K. J. Phys. Chem. 1996, 100, 13132.   DOI   ScienceOn
10 Toramaru, A.; Harada, T.; Okamura, T. Physica D 2003, 183, 133.   DOI   ScienceOn
11 Basavaraja, C.; Kim, N. R.; Park, H. T.; Huh, D. S. Bull. Korean Chem. Soc. 2009, 30, 907.   DOI   ScienceOn
12 Salter, L. F.; Sheppard, J. G. Int. J. Chem. Kinet. 1982, 14, 815.   DOI
13 Srivastava, P. K.; Mori, Y.; Hanazaki, I. J. Phys. Chem. 1991, 95, 1636.   DOI
14 Field, R. J.; Boyd, P. M. J. Phys. Chem. 1985, 89, 3707.   DOI
15 Noyes, R. M. J. Phys. Chem. 1990, 94, 4404.   DOI
16 Ruoff, P. J. Phys. Chem. 1984, 88, 1058.   DOI
17 Peralta, C.; Frank, C.; Zaharakis, A.; Cammalleri, C.; Testa, M.; Chaterpaul, S.; Hilaire, C.; Lang, D.; Ravinovitch, D.; Sobel, S. G.; Hastings, H. M. J. Phys. Chem. A 2006, 110, 1245.
18 Yadav, N.; Srivastava, P. K. Cryst. Res. Technol. 2011, 46, 277.   DOI   ScienceOn
19 Ferreiro, V.; Douglas, J. F.; Warren, J.; Karim, A. Phys. Rev. E 2002, 65, 51606.   DOI
20 Granasy, L.; Pusztai, T.; Tegze, G.; Warren, J. A.; Douglas, J. F. Phys. Rev. E 2005, 72, 011605.   DOI
21 Granasy, L.; Pusztai, T.; T. Borzsonyi, T.; Toth, G. I.; Tegze, G.; Warren, J. A.; Douglas, J. F. Philos. Mag. 2006, 86, 3757.   DOI   ScienceOn
22 Magill, J. H. J. Mater. Sci. 2001, 36, 3143.   DOI   ScienceOn
23 Hutter, L.; Bechhoefer, J. J. Cryst. Growth 2000, 217, 332.   DOI   ScienceOn
24 Ryschenkow, G.; Faivre, G. J. Cryst. Growth 1988, 87, 221.   DOI   ScienceOn
25 Chow, P. S.; Liu, X. Y.; Zhang, J.; Tan, R. B. Appl. Phys. Lett. 2002, 81, 1975.   DOI   ScienceOn
26 Beck, R.; Andreassen, J. P. Cryst. Growth Des. 2010, 10, 2934.   DOI   ScienceOn
27 Yadav, N.; Srivastava, P. K. New J. Chem. 2011, 35, 1080.   DOI   ScienceOn
28 Epstein, I. R.; Pojman, J. A. Introduction to Nonlinear Chemical Dynamics; Oxford University Press: New York, 1998.
29 Gomez, A.; Luque, J. J.; Cordoba, A. Chaos Solitons Fractals 2005, 24, 151.   DOI   ScienceOn
30 Kyu, T.; Chiu, H.-W.; Guenthner, A. J.; Okabe, Y.; Saito, H.; Inoue, T. Phys. Rev. Lett. 1999, 83, 2749.   DOI
31 He, Z.; Olley, R. H. Polymer 2000, 41, 1157.   DOI   ScienceOn
32 Okada, T.; Saito, H.; Inoue, T. Polymer 1994, 35, 5699.   DOI   ScienceOn
33 Gunton, J. D.; Miguel, M. S.; Sahni, P. S. Phase Transitions and Critical Phenomena; Academic Press: New York, 1983.
34 Bowick, M. J.; Chander, L.; Schiff, E. A.; Srivastava, A. M. Science 1994, 263, 943.   DOI   ScienceOn
35 Wincure, B.; Rey, A. D. Continuum Mech. Thermodyn. 2007, 19, 37.   DOI