• Title/Summary/Keyword: The fire safety

Search Result 3,674, Processing Time 0.029 seconds

Experimental Study for the Capacity of Ordinary and Emergency Ventilation System in Deeply Underground Subway Station (대심도 지하역사 승강장 및 대합실 평상시/비상시 급·배기 풍량에 대한 실험적 연구)

  • Jang, Yong-Jun;Lee, Ho-Seok;Park, Duck-Shin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.579-587
    • /
    • 2012
  • Shin-gumho station in Seoul underground subway have been selected to be experimentally investigated and analyzed for the real air supply & exhaust capacity compared to the original capacity of ordinary and emergency condition. The depth of Shin-gumho station is 43.6m which consists of the island-type platform ($8^{th}$ floor in underground) and a two-story lobby (first & second floor in underground). An emergency staircase connects between the platform and the lobby. Hot-wire anemometer, capture hood, wind vane & velocity meter and data acquisition systems are employed to perform the automatic measurement in this experiment. For ordinary case, air supply and exhaust capacity in the lobby were reduced by 34% and 46% compared to the original capacity, respectively. Air supply and exhaust capacity in the platform were reduced by 66% and 38%, respectively. For emergency case, air supply in the lobby was reduced by 42% and air exhaust in the platform was reduced by 28% compared to the original capacity. Therefore, air pollution in the station is expected to be worse in the ordinary environment and smoke control capability in the platform will be weakened in case of fire emergency.

Seismic Performance and Damage Prediction of Existing Fire-protection Pipe Systems Installed in RC Frame Structures (철근콘크리트 구조물 내 부착된 수계 관망시스템의 내진거동 및 손상예측)

  • Jung, Woo-Young;Ju, Bu-Seog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.37-43
    • /
    • 2011
  • Reliability of piping systems is essential to the safety of any important industrial facilities. During an earthquake, damage to the piping system can occur. It can also cause considerable economic losses and the loss of life following earthquakes. Traditionally, the study of the secondary system was less important than primary structure system, however it has recently been emerging as a key issue for the effective maintenance of the structural system and to help reduce nonstructural earthquake damage. The primary objectives of this study are to evaluate seismic design requirements and the seismic performance of gas and fire protection piping systems installed in reinforced concrete (RC) buildings. In order to characterize the seismic behavior of the existing piping system in an official building, 10 simulated earthquakes and 9 recorded real earthquakes were applied to ground level and the building system by the newmark average acceleration time history method. The results developed by this research can be used for the improvement of new seismic code/regulatory guidelines of secondary systems as well as the improvement of seismic retrofitting or the strengthening of the current piping system.

Evaluation of the Smoke Characteristics of Some Plastics in an Enclosed Compartment (밀폐된 구획 내 일부 플라스틱류의 연기 특성 평가)

  • Ji-Sun You;Kyeong-Sin Kang;Jae-Sung Lee;Yeong-Jin Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.421-425
    • /
    • 2023
  • The smoke properties of some plastics were investigated, including polymethyl methacrylate (PMMA), polycarbonate (PC), polyvinyl chloride (PVC), and polyacetal. For smoke density, related values of static smoke characteristics were measured using a smoke density tester according to ISO 5659-2. In addition, combustion with and without flame was measured independently. Under the condition of radiant heat of 50 kW/m2 using the flame method, the measured value of the maximum specific optical density (Dm) of smoke showed the lowest value for PMMA (401.26) and the highest value for PVC (1345.04). In addition, PMMA (262.82) was the lowest and PVC (1385.43) was the highest in the measured Dm of smoke under the condition of radiant heat of 50 kW/m2 in the non-flame method. Smoke generation during combustion of the object is significantly affected by the radiant heat flux, and carbonizable plastics showed a higher amount of smoke than non-carbonizable plastics during combustion. Polymers with aromatic groups in the main polymer chain generated a large amount of smoke because a large amount of char was generated due to thermal decomposition.

A Study of the Relationship between Termite-Damaged Cultural Heritage Sites and the Forest Tending Project (숲가꾸기 사업과 흰개미 피해를 받은 문화재와의 관련성에 관한 연구)

  • Kim, Minseon;Kim, Choongsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.24-35
    • /
    • 2020
  • This study aims to identify the relationship between termite-damaged cultural heritage sites and the 'Forest Tending Project' based on a comprehensive survey of the status of damage caused by termites and of the Forest Tending Project. It was observed that the Forest Tending Project started in 2004 as a five-year policy project covering over 59% of the nation's forests, which showed the maximum value in 2009 and then gradually decreased. Since then, increased damage to national cultural heritage sites by termites has been confirmed and counter measures have been expanded since 2012. Also, as a result of the National Research Institute of Cultural Heritage surveying the status of termite damage in national cultural heritage sites over these six years, it was identified that about 98% of investigated cultural heritage sites were damaged by termites, about 78% of them were adjacent to forests, and that all 46 national cultural heritage sites which had been included in the 2008 Forest Fire Prevention Cultural Heritage Afforestation Project were damaged by termites. Therefore, it is claimed that the number of termite-damaged cultural heritage sites has increased after an extensive Forest Tending Project was applied on a national scale, and it seems that all cultural heritage areas close to forests are particularly subject to termite-damage due to the number of tree stumps and lumber byproducts which can serve as habitats for the pests.

An Experimental Study on the Estimation for the Flow Coefficient of Elevator Hoistway (엘리베이터 승강로의 유량계수 산정에 관한 실험 연구)

  • Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • Recently, evacuation safety of building resident become the major concern, as the building has been higher and more complicated. Required evacuation time using stairway is longer in high-rise buildings, moreover it is impossible for the disabled to evacuate by using stairway. For this reason the study on the effectiveness of using elevator for evacuation is progressing. This study shows the flow coefficient of hoistway when elevator is moving. The results of this study can be used for the study of elevator piston effect as basic data. Experiments were performed in 5 different hoistways at 3-story and 2-story buildings. According to the result of flow coefficient experiments, average flow coefficient is 0.954. Considering the $4{\sigma}$ to guarantee 99.99 % reliance, it is 0.86. This result is 3.6 % bigger than 0.83 that Klote and Tamura suggested. It represents that the maximum critical pressure is decreased about 7 % on the same condition of elevator and elevator shaft. When the smoke control performance of high-rise building is evaluated, the result is significant economically by applying a more realistic and less value of elevator piston effect.

A Study on Emission Properties of Green House Gas on Duration Combustion of Constructive Wood Materials (건축용 목재의 연소시 지구온난화 가스의 배출특성에 관한 연구)

  • An, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.123-128
    • /
    • 2018
  • MDF was treated on the surface of MDF with fire retardant lacquer, water-soluble flame retardant coat and water-soluble wood cover on the MDF wood, and the pyrolysis characteristics and the atmospheric noxious gas generation characteristics were investigated by using the large capacity thermal analyzer. As a result of investigating pyrolysis and combustion gas generation characteristics after treatment of 0.11 / 11.55 g in terms of mass ratio, it was found that combustion starting time was slightly longer than that of pure MDF in the case of treatment with fire retardant lacquer. The combustion temperature was increased from $340^{\circ}C$ to $450^{\circ}C$. The pyrolysis and combustion gas generation characteristics of the MDF wood treated with the aqueous flame retardant coat showed the changes in combustion starting time and temperature from $260^{\circ}C$ to $542^{\circ}C$ for about 26 minutes at the mass ratio of 0.13 / 11g. Also, when the commercially available waterproof wood cover was treated with 0.13 / 11.55 g of MDF, the sudden weight change tended to increase from $300^{\circ}C$ to $370^{\circ}C$ and showed a second change at approximately $500^{\circ}C$.

A Study on the Variation of Strength and Color According to Heated Temperatures of Fire­Damaged Concrete (화재피해 콘크리트의 수열온도에 따른 강도 및 색상 변화 연구)

  • Choi, Kwang-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • In the safety diagnosis of fire-damaged concrete structures, it is difficult to evaluate the strength and changes in materials due to high temperatures with the existing durability analysis method. In particular, the compressive strength of specimen with different damage levels by thickness is used as a representative value for reducing the compressive strength of the structural member. In this study, a heating experiment was performed with only top face heating and fully heating conditions at 400℃ to 800℃. After heating, splitting tensile test and color analysis were performed to sliced specimens with a thickness of 20mm accompanied by the compressive test of a fully heated specimen. As a result of the experiment, the compressive strength reduction rate calculated from the splitting tensile strength of every sliced specimen appeared to be within 10% of the fully heated specimen on aver age, and the hue value analysis showed consistent color values were observed by red at 400℃-600℃ and gray at 700℃ or above. It follows that the techniques proposed in this study are reasonably assessable to estimate heated temperature and residual compressive strength and damage depth of concrete.

Effect of All-out Condition on Physical Balance, Agility and Power (최대 지친상태가 신체의 평형성, 민첩성, 순발력에 미치는 영향)

  • Huh, Man-Dong;Bang, Chang-Hoon
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • The aim of study intends to investigate effect of All-out condition on physical balance, agility and power and to provide the base data for the safety of firefighter. The results of the study are as follows. For power estimation, the sargent jump is $41.0{\pm}3.2cm$ before estimation and $42.2{\pm}6.02cm$ after estimation as All-out condition. For static balance estimation, the closed-eyes foot balance is $40.3{\pm}36.8$sec before estimation and $27.5{\pm}27.18$sec after estimation. For dynamic balance estimation, the beam walking is $6.2{\pm}1.22$sec before estimation and $6.4{\pm}1.57$sec after estimation. The results are statistically significant. For agility estimation, the side step is $40.3{\pm}3.40$rep/20sec before estimation and $43.3{\pm}2.50$rep/20sec after estimation. The results are statistically significant. The wholebody reaction time is $0.21{\pm}0.05$sec before estimation and $0.18{\pm}0.02$sec after estimation.

The Deterioration Properties and Actual Conditions of Insulation Cover used at 22.9 kV Transformer Bushing (22.9 kV용 변압기 부싱 절연 커버의 실태 조사 및 열화 특성)

  • Choi, Chung-Seog;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Ki-Yeon
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.35-41
    • /
    • 2006
  • In this study, we presented the problems in the insulation cover of 22.9kV transformer bushing through investigating actual conditions. After thermal stress applied to the insulation cover, deterioration patterns, thermogravimetric and infrared characteristics were analyzed, and the results were applied to the cause analysis of accidents and judgement of safety. The insulation covers are used to protect exposed terminals of transformer, but they had improper size and length. Therefore, they could not show efficient insulation function. In case that thermal stress of $150^{\circ}C$ was applied to the insulation covers, plastic insulation covers(A, B, D, E) damaged severely, whereas rubber insulation cover(C) showed normal shapes. In the result of thermogravimetric analysis, the thermal gravity of plastic covers(A) decreased about 33.3% at $307.8^{\circ}C\;to\;405.9^{\circ}C$. and he thermal gravity of rubber covers (C) decreased about 53.7% at $258.8^{\circ}C\;to\;32.9^{\circ}C$. In the result of FT-IR analysis, plastic covers showed peaks characteristic of $CH_2,\;CH_3$, C=O and C=C bonds, whereas rubber covers showed peaks characteristic of OH, $CH_2,\;CH_3$, C=O, C=N and C=C bonds.

The study on interval calculation of cross passage in undersea tunnel by quantitative risk assesment method (해저철도터널(목포-제주간) 화재시 정량적 위험도 평가기법에 의한 피난연결통로 적정간격산정에 관한 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • Quantitative Mokpo-Jeju undersea tunnel is currently on the basis plan for reviewing validation. As for the cross section shape for express boat of 105 km line, sing track two tube is being reviewed as the Euro tunnel equipped with service tunnel. Also, 10 carriage trains have been planned to operate 76 times for one way a day. So, in this study, quantitative risk assessment method is settled, which is intended to review the optimal space between evacuation connection hall of tunnel by quantitative risk analysis method. In addition to this, optimal evacuation connection hall space is calculated by the types of cross section, which are Type 3 (double track single tube), Type 1 (sing track two tube), and Type 2 (separating double track on tube with partition). As a result, cross section of Type 2 is most efficient for securing evacuation safety, and the evacuation connection space is required for 350 m in Type 1, 400 m in Type 2, and 1,500 m in Type3 to satisfy current domestic social risk assessment standard.