DOI QR코드

DOI QR Code

Evaluation of the Smoke Characteristics of Some Plastics in an Enclosed Compartment

밀폐된 구획 내 일부 플라스틱류의 연기 특성 평가

  • Ji-Sun You (Department of Korea Institute of Civil Engineering and Building Technology Fire Researcher Center) ;
  • Kyeong-Sin Kang (Department of Korea Institute of Civil Engineering and Building Technology Fire Researcher Center) ;
  • Jae-Sung Lee (Department of Architectural Engineering, Hannam University) ;
  • Yeong-Jin Chung (The National Safety Environment Institute)
  • 유지선 (한국건설기술연구원 화재안전연구소) ;
  • 강경신 (한국건설기술연구원 화재안전연구소) ;
  • 이재승 (한남대학교 건축공학과) ;
  • 정영진 (국가안전환경원)
  • Received : 2023.06.13
  • Accepted : 2023.07.02
  • Published : 2023.08.10

Abstract

The smoke properties of some plastics were investigated, including polymethyl methacrylate (PMMA), polycarbonate (PC), polyvinyl chloride (PVC), and polyacetal. For smoke density, related values of static smoke characteristics were measured using a smoke density tester according to ISO 5659-2. In addition, combustion with and without flame was measured independently. Under the condition of radiant heat of 50 kW/m2 using the flame method, the measured value of the maximum specific optical density (Dm) of smoke showed the lowest value for PMMA (401.26) and the highest value for PVC (1345.04). In addition, PMMA (262.82) was the lowest and PVC (1385.43) was the highest in the measured Dm of smoke under the condition of radiant heat of 50 kW/m2 in the non-flame method. Smoke generation during combustion of the object is significantly affected by the radiant heat flux, and carbonizable plastics showed a higher amount of smoke than non-carbonizable plastics during combustion. Polymers with aromatic groups in the main polymer chain generated a large amount of smoke because a large amount of char was generated due to thermal decomposition.

Polymethyl methacrylate (PMMA), polycarbonate (PC), polyvinyl chloride (PVC), 그리고 polyacetal을 포함하는 일부 플라스틱류에 대한 연기특성을 조사하였다. 연기밀도는 ISO 5659-2의 기준에 의해 연기밀도시험기를 이용하여 정적인 연기 특성의 관련 값을 측정하였다. 또한 불꽃을 동반하는 연소와 불꽃을 동반하지 않는 연소를 구분하여 측정하였다. 불꽃방식의 복사열 50 kW/m2 의 조건하에서 연기의 최대비광학밀도(Dm) 측정값은 PMMA (401.26)가 최저로, PVC (1345.04)가 최대로 나타났다. 또한 비불꽃방식의 복사열 50 kW/m2 의 조건하에서 연기의 Dm 측정값은 PMMA (262.82) 가 최저로, PVC (1385.43)가 최대로 나타났다. 대상물의 연소 시 연기발생은 복사열 유속의 영향을 상당히 받으며, 탄화성 플라스틱은 연소 시 비탄화성 플라스틱보다 높은 연기 발생량을 나타내었다. 주 고분자 사슬에 방향족 그룹이 있는 폴리머는 열분해로 인해 다량의 숯이 생성되므로 다량의 연기를 발생시켰다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KS163162).

References

  1. Z. Masoumi, J. V. L. Genderen, and J. Maleki, Fire risk assessment in dense urban areas using information fusion techniques, Int. J. Geogr. Inf. Sci., 8, 579 (2019).
  2. A. N. Ede, Fibre reinforced polymer (FRP) composites: Exploring the potentials for repairs of deficient RC structures in Nigeria, NICE J. Struct. Eng., 7, 17-24 (2011).
  3. T. Zhang, X. Zhou, and L. Yang, Experimental study of fire hazards of thermal-insulation material in diesel locomotive: aluminum-polyurethane, Materials, 9, 168 (2016).
  4. W. P. Sung, J. C. M. Kao, and R. Chen, Frontiers of Energy and Environmental Engineering, 1st ed., 23, CRC Press, London (2012).
  5. A. Mercel, N. D. Tsihlis, R. Maile, and M. R. Kibbe, Emerging therapies for smoke inhalation injury: A review, J. Transl. Med., 18, 141 (2020).
  6. H. Vahabi, B. K. Kandola, and M. R. Saeb, Flame retardancy index for thermoplastic composites, Polymers, 11, 407 (2019).
  7. T. L. Junod, Gaseous emissions and toxic hazards associated with plastics in fire situations - A literature review, NASA Technical Note, Washington, D. C. 6-10 (1976).
  8. R. Sonnier, A. Viretto, L. Dumazert, and B. Gallard, A method to study the two-step decomposition of binary blends in cone calorimeter, Combust. Flame, 169, 1-10 (2016). https://doi.org/10.1016/j.combustflame.2016.04.016
  9. ISO 5659-2: Plastics - Smoke generation - Part 2: Determination of optical density by a single-chamber test (2012).
  10. The National Technical Information Service (NTIS), Polymer Flammability (2005).
  11. J. Greener, G. Pearson, and M. Cakmak, Roll-to-Roll Manufacturing: Process Elements and Recent Advances, 1st ed, 174, John Wiley & Sons, Inc. (2018).
  12. ASTM E 662. Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials (2015).
  13. Q. Zhang and Y. Chen, Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene, J. Polym. Res., 18, 293-303 (2011). https://doi.org/10.1007/s10965-010-9418-0
  14. Y. Matsuzawa, M. Ayabe, and J. Nishino, Acceleration of cellulose co-pyrolysis with polymer, Polym. Degrad. Stab., 71, 435-444 (2001). https://doi.org/10.1016/S0141-3910(00)00195-6
  15. Z. Czegeny, E. Jakab, J. Bozi, and M. Blazso, Pyrolysis of Wood-PVC mixtures. formation of chloromethane from lignocellulosic materials in the presence of PVC, J. Anal. Appl. Pyrolysis, 113, 123-132 (2015). https://doi.org/10.1016/j.jaap.2014.11.016
  16. G. Wypych, PVC Degradation & Stabilitzation, 1st ed, 126, Elsevier, Toronto, Canada (2015).
  17. X. Liu, J. Hao, and S. Gaan, Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials, RSC Adv., 6, 74742-74756 (2016). https://doi.org/10.1039/C6RA14345H
  18. J. Zhou, H. Jiang, Y. Zhou, and W. Gao, Flame suppression of 100 nm PMMA dust explosion by KHCO3 with different particle size, Process Saf. Environ. Prot., 132, 303-312 (2019). https://doi.org/10.1016/j.psep.2019.10.027
  19. K. M. Butler, A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity, NISTIR-6894, 1, NIST, USA (2002).