• Title/Summary/Keyword: The Constraint Programming

Search Result 260, Processing Time 0.022 seconds

FLEXIBLE OPTIMIZATION MODEL FOR LINEAR SCHEDULING PROBLEMS

  • Shu-Shun Liu;Chang-Jung Wang
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.802-807
    • /
    • 2005
  • For linear projects, it has long been known that resource utilization is important in improving work efficiency. However, most existing scheduling techniques cannot satisfy the need for solving such issues. This paper presents an optimization model for solving linear scheduling problems involving resource assignment tasks. The proposed model adopts constraint programming (CP) as the searching algorithm for model formulation, and the proposed model is designed to optimize project total cost. Additionally, the concept of outsourcing resources is introduced here to improve project performance.

  • PDF

On Auxiliary Linear Programming Problems for Fuzzy Goal Programming (퍼지목표계획(目標計劃) 모형(模型)의 보조문제화(補助問題化))

  • Park, Sang-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.1
    • /
    • pp.101-106
    • /
    • 1992
  • In this paper fuzzy goal programming problems with fuzzy constraints and fuzzy coefficients in both matrix and right hand side of the constraints set are considered. Because of fuzzy coefficients in both members of each constraint ranking methods for fuzzy numbers are considered. An additive model to solve fuzzy goal programming problems is formulated. The diversity of each methods provides a lot of different models of auxiliary linear programming problems from which fuzzy solutions to the fuzzy goal programming problem can be obtained.

  • PDF

GENERALIZED INVEXITY AND DUALITY IN MULTIOBJECTIVE NONLINEAR PROGRAMMING

  • Das, Laxminarayan;Nanda, Sudarsan
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.273-281
    • /
    • 2003
  • The purpose of this paper is to study the duality theorems in cone constrained multiobjective nonlinear programming for pseudo-invex objectives and quasi-invex constrains and the constraint cones are arbitrary closed convex ones and not necessarily the nonnegative orthants.

SADDLE POINT AND GENERALIZED CONVEX DUALITY FOR MULTIOBJECTIVE PROGRAMMING

  • Yan, Zhao-Xiang;Li, Shi-Zheng
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.227-235
    • /
    • 2004
  • In this paper we consider the dual problems for multiobjective programming with generalized convex functions. We obtain the weak duality and the strong duality. At last, we give an equivalent relationship between saddle point and efficient solution in multiobjective programming.

ANOTHER APPROACH TO MULTIOBJECTIVE PROGRAMMING PROBLEMS WITH F-CONVEX FUNCTIONS

  • LIU SANMING;FENG ENMIN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.379-390
    • /
    • 2005
  • In this paper, optimality conditions for multiobjective programming problems having F-convex objective and constraint functions are considered. An equivalent multiobjective programming problem is constructed by a modification of the objective function. Furthermore, an F-Lagrange function is introduced for a constructed multiobjective programming problem, and a new type of saddle point is introduced. Some results for the new type of a saddle point are given.

Resource and Sequence Optimization Using Constraint Programming in Construction Projects

  • Kim, Junyoung;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk;Joo, Seonu;Yoon, Inseok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.608-615
    • /
    • 2022
  • Construction projects are large-scale projects that require extensive construction costs and resources. Especially, scheduling is considered as one of the essential issues for project success. However, the schedule and resource management are challenging to conduct in high-tech construction projects including complex design of MEP and architectural finishing which has to be constructed within a limited workspace and duration. In order to deal with such a problem, this study suggests resource and sequence optimization using constraint programming in construction projects. The optimization model consists of two modules. The first module is the data structure of the schedule model, which consists of parameters for optimization such as labor, task, workspace, and the work interference rate. The second module is the optimization module, which is for optimizing resources and sequences based on Constraint Programming (CP) methodology. For model validation, actual data of plumbing works were collected from a construction project using a five-minute rate (FMR) method. By comparing actual data and optimized results, this study shows the possibility of reducing the duration of plumbing works in construction projects. This study shows decreased overall project duration by eliminating work interference by optimizing resources and sequences within limited workspaces.

  • PDF

On a Two Dimensional Linear Programming Knapsack Problem with the Generalized GUB Constraint (일반화된 일반상한제약을 갖는 이차원 선형계획 배낭문제 연구)

  • Won, Joong-Yeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • We study on a generalization of the two dimensional linear programming knapsack problem with the extended GUB constraint, which was presented in paper Won(2001). We identify some new parametric properties of the generalized problem and derive a solution algorithm based on the identified parametric properties. The solution algorithm has a worst case time complexity of order O($n^2logn$), where n is the total number of variables. We illustrate a numerical example.

Implementation technique of execution time predictable real-time mechanism control language (실행시간 예측가능한 실시간 메카니즘 제어언어의 구현기법)

  • 백정현;원유헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1365-1376
    • /
    • 1997
  • In this paper, we designed real time mechanism control language and proposed execution time analysis technique. It was impossible to handle real-time mechanism control programs like programmable controller, numerical controller, distributed control system and robot controller with general purpose programming languages and operating systems because they have to process electric signals generated by thousands of sensors at the same at the same time and in real time. So we made it possible to predict plausibility of time constraint constructs of tiem constraint construct of a real time application program at compilation time by adding time constraint constructs and mechanism synchronization structure to conditional statement and iteration statement of a programming language and developing execution time analysis technique.

  • PDF

A Study on a Fuzzy Berth Assignment Programming Problem (퍼지 반박시정계획 문제에 관한 연구)

  • 금종수;이홍걸;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.59-70
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. In this paper, we concerned with of fuzzy mathematical programming models for a berth assignment problem to achieved an efficient berth operation in a fuzzy environment. In this paper, we focus on the berth assignment programming with fuzzy parameters which are based on personal opinions or subjective judgement. From the above point of view, assume that a goal and a constraint are given by fuzzy sets, respectively, which are characterized by membership functions. Let a fuzzy decision be defined as the fuzzy set resulting from the intersection of a goal and constraint. This paper deals with fuzziness in all parameters which are expressed by fuzzy numbers. A fuzzy parameter defined by a fuzzy number means a possibility distribution of the parameters. These fuzzy 0-1 integer programming problems are formulated by fuzzy functions whose concept is also called the extension principle. We deal with a berth assignment problem with triangular fuzzy coefficients and propose a branch and bound algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) concept. The berth assignment problem is formulated by min-max and fuzzy 0-1 integer programming. Finally, we gave the numerical solutions of the illustrative examples.

  • PDF