Journal of Korean Society of Archives and Records Management
/
v.24
no.1
/
pp.89-109
/
2024
The study analyzed the research trends of domestic and international record information services from 2003 to 2022. A total of 136 academic papers registered in the Korea Citation Index (KCI) and 74 from the Library, Information Science & Technology Abstracts (LISTA) were examined by quantitative and qualitative content analysis to understand the research status of 20 years from various angles, such as publication year, research type, researcher type, subject, and purpose. Frequency analysis, co-occurrence frequency analysis, centrality analysis, and topic modeling were performed by applying text mining techniques. Results showed that domestic papers demonstrated a research flow focused on specific institutions or records, and user-centered satisfaction surveys and content-centered studies were conducted. Moreover, foreign papers confirmed various evaluation-oriented and information provision studies, such as data, resources, and collections, along with the research trend focusing on the relationship between archivists and users. The management of information resources was identified as a common topic in both domestic and foreign papers, but it is possible to identify that domestic research focuses on maintaining the quality of domestic information resources, while foreign research focuses on the storage and retrieval of information.
Journal of the Korean Applied Science and Technology
/
v.40
no.4
/
pp.724-732
/
2023
In this study, we tried to analyze the characteristics of color cosmetics information search and the major information of interest in the color cosmetics market after COVID-19 shown in the text mining analysis results by collecting data on online interest information of consumers in the color cosmetics market after COVID-19. In the empirical analysis, text mining was performed on all documents such as news, blogs, cafes, and web pages, including the word "color cosmetics". As a result of the analysis, online information searches for color cosmetics after COVID-19 were mainly focused on purchase information, information on skin and mask-related makeup methods, and major topics such as interest brands and event information. As a result, post-COVID-19 color cosmetics buyers will become more sensitive to purchase information such as product value, safety, price benefits, and store information through active online information search, so a response strategy is required.
Generative Artificial Intelligence (AI) technology is gaining global attention as it can automatically generate sentences, images, and voices that humans previously generated. In particular, ChatGPT, a representative generative AI service, shows proactivity and accuracy differentiated from existing chatbot services, and the number of users is rapidly increasing in a short period of time. Despite this growing interest in generative AI services, most preceding studies are still in their infancy. Therefore, this study utilized LDA topic modeling and keyword network diagrams to derive success factors for generative AI services and to propose successful business strategies based on them. In addition, using ChatGPT, a new research methodology that complements the existing text-mining method, was presented. This study overcomes the limitations of previous research that relied on qualitative methods and makes academic and practical contributions to the future development of generative AI services.
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.609-615
/
2024
The construction industry's fatality count stands at 402, comprising approximately 46% of total industrial accidents. Notably, construction costs less than 5 billion won account for about 69%, so strengthening safety management at small and medium-sized construction sites is required. In this study, 19,511 accident investigation data were collected using web scraping. Through statistical analysis of the collected structured data and text mining analysis of the unstructured data, accident types and causes of accidents were analyzed by construction costs at sites less than 5 billion won. As a result, it was confirmed that there were differences in accident types and causes depending on the construction costs. It is hoped that the results of this study will be used for customized safety management at small and medium-sized construction sites.
The Journal of the Convergence on Culture Technology
/
v.10
no.6
/
pp.789-797
/
2024
The study of cultural consumers plays an important role in selecting actors, location selection, marketing, and scenarios in movies and series, and in box office factors. In particular, the study of cultural consumers of OTT original contents can produce viewer-tailored works by utilizing massive viewing data, social media user analysis, and location-based information. The research method analyzed the emotional vocabulary of text mining N-gram, CONCOR, and Bayesian classifier machine learning. Through the Netflix work 'Parasyte: The Gray' based on a comic book, the analysis of cultural consumption patterns of cultural consumers, actor selection, implications of genre change, complex human emotional narrative, location selection, and the effects of VFX were analyzed. In addition, the changed story development and storytelling structure were examined through Dan Harmon's 8 stages of hero storytelling. This study will save costs and time in cultural content development and the entertainment industry through the response factors of cultural consumers in OTT original contents and considerations for production.
In June 2023, the term "spatial computing" began gaining recognition among the public with Apple's Vision Pro announcement, and interest surged exponentially after its official release in February 2024. With the market opening up, there's a need to analyze public perception for sustainable growth of Spatial Computing and provide evidence-based strategies for industry and government response. This study explores domestic public perception of Spatial Computing using various text mining techniques and seeks strategic directions for successful market penetration based on the analysis. Significantly, the study contributes by leading research on Spatial Computing, proposing new research methodologies, and offering strategic and policy directions for stakeholders.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3230-3255
/
2022
Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.
Automated text categorization is to classify free text documents into predefined categories automatically and whose main goals is to reduce considerable manual process required to the task. The researches to improving the text categorization performance(efficiency) in recent years, focused on enhancing existing classification models and algorithms itself, but, whose range had been limited by feature based statistical methodology. In this paper, we propose RTPost system of different style from i.ny traditional method, which takes fault tolerant system approach and data mining strategy. The 2 important parts of RTPost system are reinforcement training and post-processing part. First, the main point of training method deals with the problem of defining category to be classified before selecting training sample documents. And post-processing method deals with the problem of assigning category, not performance of classification algorithms. In experiments, we applied our system to documents getting low classification accuracy which were laid on a decision boundary nearby. Through the experiments, we shows that our system has high accuracy and stability in actual conditions. It wholly did not depend on some variables which are important influence to classification power such as number of training documents, selection problem and performance of classification algorithms. In addition, we can expect self learning effect which decrease the training cost and increase the training power with employing active learning advantage.
Journal of the Korean Society for information Management
/
v.40
no.4
/
pp.1-31
/
2023
This study conducted user experience evaluation by introducing various text mining techniques along with topic modeling techniques for mobile menstrual cycle measurement applications that are closely related to women's health and analyzed the results by combining them with a honeycomb model. To evaluate the user experience revealed in the menstrual cycle measurement application review, 47,117 Korean reviews of the menstrual cycle measurement application were collected. Topic modeling analysis was conducted to confirm the overall discourse on the user experience revealed in the review, and text network analysis was conducted to confirm the specific experience of each topic. In addition, sentimental analysis was conducted to understand the emotional experience of users. Based on this, the development strategy of the menstrual cycle measurement application was presented in terms of accuracy, design, monitoring, data management, and user management. As a result of the study, it was confirmed that the accuracy and monitoring function of the menstrual cycle measurement of the application should be improved, and it was observed that various design attempts were required. In addition, the necessity of supplementing personal information and the user's biometric data management method was also confirmed. By exploring the user experience (UX) of the menstrual cycle measurement application in-depth, this study revealed various factors experienced by users and suggested practical improvements to provide a better experience. It is also significant in that it presents a methodology by combines topic modeling and text network analysis techniques so that researchers can closely grasp vast amounts of review data in the process of evaluating user experiences.
With the advent of the 4-th industrial revolution, manufacturing companies have increasing interests in the realization of smart manufacturing by utilizing their accumulated facilities data. However, most previous research dealt with the structured data such as sensor signals, and only a little focused on the unstructured data such as text, which actually comprises a large portion of the accumulated data. Therefore, we propose an association rule mining based facility error pattern extraction framework, where text data written by operators are analyzed. Specifically, phrases were extracted and utilized as a unit for text data analysis since a word, which normally used as a unit for text data analysis, is unable to deliver the technical meanings of facility errors. Performances of the proposed framework were evaluated by addressing a real-world case, and it is expected that the productivity of manufacturing companies will be enhanced by adopting the proposed framework.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.