• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.029 seconds

A News Video Mining based on Multi-modal Approach and Text Mining (멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝)

  • Lee, Han-Sung;Im, Young-Hee;Yu, Jae-Hak;Oh, Seung-Geun;Park, Dai-Hee
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.127-136
    • /
    • 2010
  • With rapid growth of information and computer communication technologies, the numbers of digital documents including multimedia data have been recently exploded. In particular, news video database and news video mining have became the subject of extensive research, to develop effective and efficient tools for manipulation and analysis of news videos, because of their information richness. However, many research focus on browsing, retrieval and summarization of news videos. Up to date, it is a relatively early state to discover and to analyse the plentiful latent semantic knowledge from news videos. In this paper, we propose the news video mining system based on multi-modal approach and text mining, which uses the visual-textual information of news video clips and their scripts. The proposed system systematically constructs a taxonomy of news video stories in automatic manner with hierarchical clustering algorithm which is one of text mining methods. Then, it multilaterally analyzes the topics of news video stories by means of time-cluster trend graph, weighted cluster growth index, and network analysis. To clarify the validity of our approach, we analyzed the news videos on "The Second Summit of South and North Korea in 2007".

Building Concept Networks using a Wikipedia-based 3-dimensional Text Representation Model (위키피디아 기반의 3차원 텍스트 표현모델을 이용한 개념망 구축 기법)

  • Hong, Ki-Joo;Kim, Han-Joon;Lee, Seung-Yeon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.9
    • /
    • pp.596-603
    • /
    • 2015
  • A concept network is an essential knowledge base for semantic search engines, personalized search systems, recommendation systems, and text mining. Recently, studies of extending concept representation using external ontology have been frequently conducted. We thus propose a new way of building 3-dimensional text model-based concept networks using the world knowledge-level Wikipedia ontology. In fact, it is desirable that 'concepts' derived from text documents are defined according to the theoretical framework of formal concept analysis, since relationships among concepts generally change over time. In this paper, concept networks hidden in a given document collection are extracted more reasonably by representing a concept as a term-by-document matrix.

A Study of Data Mining Application in Information Management Field (정보관리분야의 데이터 마이닝 기법 적용에 대한 연구)

  • Choi, Hee-Yoon
    • Journal of Information Management
    • /
    • v.31 no.3
    • /
    • pp.1-20
    • /
    • 2000
  • A variety of trials selecting necessary and valuable information from rapidly increasing volume of data are made, and as one of them, data mining methods is an interest. This methodology is increasingly appzied to information management field which consists of efficient processing and systemizing increasing digital documents for user service. This article analyzes theoletical background and empirical case studies of data mining, and predicts the possibility of its application to information management area.

  • PDF

Exploring an Optimal Feature Selection Method for Effective Opinion Mining Tasks

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.171-177
    • /
    • 2019
  • This paper aims to find the most effective feature selection method for the sake of opinion mining tasks. Basically, opinion mining tasks belong to sentiment analysis, which is to categorize opinions of the online texts into positive and negative from a text mining point of view. By using the five product groups dataset such as apparel, books, DVDs, electronics, and kitchen, TF-IDF and Bag-of-Words(BOW) fare calculated to form the product review feature sets. Next, we applied the feature selection methods to see which method reveals most robust results. The results show that the stacking classifier based on those features out of applying Information Gain feature selection method yields best result.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

Performance analysis of volleyball games using the social network and text mining techniques (사회네트워크분석과 텍스트마이닝을 이용한 배구 경기력 분석)

  • Kang, Byounguk;Huh, Mankyu;Choi, Seungbae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.619-630
    • /
    • 2015
  • The purpose of this study is to provide basic information to develop a game strategy plan of a team in a future by identifying the patterns of attack and pass of national men's professional volleyball teams and extracting core key words related with volleyball game performance to evaluate game performance using 'social network analysis' and 'text mining'. As for the analysis result of 'social network analysis' with the whole data, group '0' (6 players) and group '1' (11 players) were partitioned. A point of view the degree centrality and betweenness centrality in 'social network analysis' results, we can know that the group '1' more active game performance than the group '0'. The significant result for two group (win and loss) obtained by 'text mining' according to two groups ('0' and '1') obtained by 'social network analysis' showed significant difference (p-value: 0.001). As for clustering of each network, group '0' had the tendency to score points through set player D and E. In group '1', the player K had the tendency to fail if he attack through 'dig'; players C and D have a good performance through 'set' play.

An exploratory study for the development of a education framework for supporting children's development in the convergence of "art activity" and "language activity": Focused on Text mining method ('미술'과 '언어' 활동 융합형의 아동 발달지원 교육 프레임워크 개발을 위한 탐색적 연구: 텍스트 마이닝을 중심으로)

  • Park, Yunmi;Kim, Sijeong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.297-304
    • /
    • 2021
  • This study aims not only to access the visual thought-oriented approach that has been implemented in established art therapy and education but also to integrate language education and therapeutic approach to support the development of school-age children. Thus, text mining technique was applied to search for areas where different areas of language and art can be integrated. This research was conducted in accordance with the procedure of basic research, preliminary DB construction, text screening, DB pre-processing and confirmation, stop-words removing, text mining analysis and the deduction about the convergent areas. These results demonstrated that this study draws convergence areas related to regional, communication, and learning functions, areas related to problem solving and sensory organs, areas related to art and intelligence, areas related to information and communication, areas related to home and disability, topics, conceptualization, peer-related areas, integration, reorganization, attitudes. In conclusion, this study is meaningful in that it established a framework for designing an activity-centered convergence program of art and language in the future and attempted a holistic approach to support child development.

Analysis of Use Behavior of Urban Park Users Expressing Depression on Social Media Using Text Mining Technique (텍스트 마이닝 기법을 활용한 SNS 상에서 우울감을 언급한 도시공원 이용자의 이용행태 분석)

  • Oh, Jiyeon;Nam, Seongwoo;Lee, Peter Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.319-328
    • /
    • 2022
  • The purpose of this study was to investigate the relationship between depression due to the COVID-19 pandemic and park use behaviors using on line posts. During the period of the pandemic prevention activities, text data containing both 'park' and 'depression' were collected from blogs and cafes in the search engine of Naver and Daum, then analyzed using Text Mining and Social Network techniques. As a result, the main usage behaviors of park users who mentioned depression were 'look', 'stroll(walk)' and 'eat'. Other types of behaviors were connected centering around 'look', one of the communication behaviors. Also, from CONCOR analysis, as the cluster referred from communication behavior and dynamic behavior was formed as a single behavior type, it was considered park users with depression perceived the park as the space for communication and physical activities. As the spread of COVID-19 caused the restriction of communication activities, the users might consider parks as one of the solutions. In addition, it was considered that passive usage behaviors have prevailed rather than active ones due to the depression. Resulting outcomes would be useful to plan helpful urban park for citizens. It is necessary to further analyze the park use behavior of users in relation to the period of before/after the COVID-19 pandemic and the existence/nonexistence of depression.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.