Table 1. Study of Opinion mining
Table 2. Results of Accuracy
Table 4. Results of AUC
Table 3. The number of features
Table 5. Results of T-test
References
- A. Yadollahi, A. G. Shahraki, & O. R. Zaiane, "Current state of text sentiment analysis from opinion to emotion mining". Association for computing machinery computing surveys, Vol. 50, No. 2, Article 25, 2017.
- M. V. Mantyla, D. Graziotin, & M. Kuutila, "The evolution of sentiment analysis? A review of research topics, venues, and top cited papers", Computer Science Review, Vol. 27, pp. 16-32, 2018. https://doi.org/10.1016/j.cosrev.2017.10.002
- C. Catal, & M. Nangir, "A sentiment classification model based on multiple classifiers". Applied Soft Computing, Vol. 50, pp. 135-141, 2017. https://doi.org/10.1016/j.asoc.2016.11.022
- M. Kang, J. Ahn, & K. Lee, "Opinion mining using ensemble text hidden Markov models for text classification". Expert Systems with Applications, Vol. 94, pp. 218-227, 2018. https://doi.org/10.1016/j.eswa.2017.07.019
- Z. Li, W. Xu, L. Zhang, & R. Y. Lau, "An ontology-based Web mining method for unemployment rate prediction", Decision Support Systems, Vol. 66, pp. 114-122, 2014. https://doi.org/10.1016/j.dss.2014.06.007
- M. Ghiassi, J. Skinner, & D. Zimbra, "Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network.", Expert systems with applications, Vol. 40, No. 16, pp. 6266-6282, 2013. https://doi.org/10.1016/j.eswa.2013.05.057
- N. F. Da Silva, E. R. Hruschka, & E. R. Hruschka, "Tweet sentiment analysis with classifier ensembles." Decision support systems, Vol. 66, pp. 170-179, 2014. https://doi.org/10.1016/j.dss.2014.07.003
- G. Wang, J. Sun, J. Ma, K. Xu, & J. Gu, "Sentiment classification: The contribution of ensemble learning.", Decision support systems, Vol. 57, pp. 77-93, 2014. https://doi.org/10.1016/j.dss.2013.08.002
- Y. Liu, J. W. Bi, & Z. P. Fan, "Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms.", Expert systems with applications, Vol. 80, pp. 323-339, 2017. https://doi.org/10.1016/j.eswa.2017.03.042
- M. A. Hall, "Correlation-based feature selection for machine learning", 1999.
- M. Robnik-Sikonja, & I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF". Machine learning, Vol. 53, No. (1-2), pp. 23-69, 2003. https://doi.org/10.1023/A:1025667309714
- S. Menard, "Applied logistic regression analysis, Vol. 106, Sage", 2002.
- W. L. Buntine, "Operations for learning with graphical models". Journal of Atificial Intelligence Research, Vol. 2, pp. 159-225, 1994. https://doi.org/10.1613/jair.62
- M. Ballings, D. Van den Poel, N. Hespeels, & R. Gryp, "Evaluating multiple classifiers for stock price direction prediction". Expert Systems with Applications, Vo. 42, No. 20, pp. 7046-7056, 2015. https://doi.org/10.1016/j.eswa.2015.05.013
- L. Breiman, "Random forests. Machine learning, Vol. 45, No. 1, pp. 5-32, 2001. https://doi.org/10.1023/A:1010933404324
- T.K. Ho, "The Random Subspace Method for Constructing Decision Forests," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832-844, 1998. https://doi.org/10.1109/34.709601
- S. K. Murthy, "Automatic construction of decision trees from data: A multi-disciplinary survey". Data mining and knowledge discovery, Vol. 2, No. 4, pp. 345-389, 1998. https://doi.org/10.1023/A:1009744630224
- V. Vapnik, "The nature of statistical learning theory. Springer science & business media", 2013.
- L. Breiman, "Bagging predictors". Machine learning, Vol. 24, No. 2, pp. 123-140, 1996. https://doi.org/10.1023/A:1018054314350
- D. H. Wolpert, "Stacked generalization". Neural networks, Vol. 5, No. 2, pp. 241-259, 1992. https://doi.org/10.1016/S0893-6080(05)80023-1
- J. Blitzer, M. Dredze, & F. Pereira, "Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification". In Proceedings of the 45th annual meeting of the association of computational linguistics pp. 440-447, 2007.
- A. P. Bradley, "The use of the area under the ROC curve in the evaluation of machine learning algorithms", Pattern recognition, Vol. 30, No. 7, pp. 1145-1159, 1997. https://doi.org/10.1016/S0031-3203(96)00142-2
- S. Arlot, & A. Celisse, "A survey of cross-validation procedures for model selection", Statistics surveys, Vol. 4, pp. 40-79, 2010. https://doi.org/10.1214/09-SS054