• Title/Summary/Keyword: Text Mining Method

Search Result 453, Processing Time 0.022 seconds

Using Ontologies for Semantic Text Mining (시맨틱 텍스트 마이닝을 위한 온톨로지 활용 방안)

  • Yu, Eun-Ji;Kim, Jung-Chul;Lee, Choon-Youl;Kim, Nam-Gyu
    • The Journal of Information Systems
    • /
    • v.21 no.3
    • /
    • pp.137-161
    • /
    • 2012
  • The increasing interest in big data analysis using various data mining techniques indicates that many commercial data mining tools now need to be equipped with fundamental text analysis modules. The most essential prerequisite for accurate analysis of text documents is an understanding of the exact semantics of each term in a document. The main difficulties in understanding the exact semantics of terms are mainly attributable to homonym and synonym problems, which is a traditional problem in the natural language processing field. Some major text mining tools provide a thesaurus to solve these problems, but a thesaurus cannot be used to resolve complex synonym problems. Furthermore, the use of a thesaurus is irrelevant to the issue of homonym problems and hence cannot solve them. In this paper, we propose a semantic text mining methodology that uses ontologies to improve the quality of text mining results by resolving the semantic ambiguity caused by homonym and synonym problems. We evaluate the practical applicability of the proposed methodology by performing a classification analysis to predict customer churn using real transactional data and Q&A articles from the "S" online shopping mall in Korea. The experiments revealed that the prediction model produced by our proposed semantic text mining method outperformed the model produced by traditional text mining in terms of prediction accuracy such as the response, captured response, and lift.

Discovering Meaningful Trends in the Inaugural Addresses of North Korean Leader Via Text Mining (텍스트마이닝을 활용한 북한 지도자의 신년사 및 연설문 트렌드 연구)

  • Park, Chul-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.3
    • /
    • pp.43-59
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korean new year addresses, one of most important and authoritative document publicly announced by North Korean government. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. We propose a procedure to find meaningful tendencies based on a combination of text mining, cluster analysis, and co-occurrence networks. To demonstrate applicability and effectiveness of the proposed procedure, we analyzed the inaugural addresses of Kim Jung Un of the North Korea from 2017 to 2019. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. We found that uncovered semantic structures of North Korean new year addresses closely follow major changes in North Korean government's positions toward their own people as well as outside audience such as USA and South Korea.

Interplay of Text Mining and Data Mining for Classifying Web Contents (웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구)

  • 최윤정;박승수
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.33-46
    • /
    • 2002
  • Recently, unstructured random data such as website logs, texts and tables etc, have been flooding in the internet. Among these unstructured data there are potentially very useful data such as bulletin boards and e-mails that are used for customer services and the output from search engines. Various text mining tools have been introduced to deal with those data. But most of them lack accuracy compared to traditional data mining tools that deal with structured data. Hence, it has been sought to find a way to apply data mining techniques to these text data. In this paper, we propose a text mining system which can incooperate existing data mining methods. We use text mining as a preprocessing tool to generate formatted data to be used as input to the data mining system. The output of the data mining system is used as feedback data to the text mining to guide further categorization. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We apply this method to categorize web sites containing adult contents as well as illegal contents. The result shows improvements in categorization performance for previously ambiguous data.

  • PDF

A Text Mining Analysis for Research Trend about the Mathematics Education (텍스트 마이닝 분석을 통한 수학교육 연구 동향 분석)

  • Jin, Mireu;Ko, Ho Kyoung
    • East Asian mathematical journal
    • /
    • v.35 no.4
    • /
    • pp.489-508
    • /
    • 2019
  • In this paper we used text mining method to analyze journals of mathematics education posterior to the year of 2016. To figure out trends of mathematics education research. we analyzed the key words largely mentioned in the recent mathematics education journals by Term Frequency and Term Frequency-Inverse Document Frequency method. We also looked at how these keywords match up with the key words that appear of education to prepare for future society. This result can infer the characteristics of mathematics education research in the aspect upcoming research topics.

The Adaptive SPAM Mail Detection System using Clustering based on Text Mining

  • Hong, Sung-Sam;Kong, Jong-Hwan;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2186-2196
    • /
    • 2014
  • Spam mail is one of the most general mail dysfunctions, which may cause psychological damage to internet users. As internet usage increases, the amount of spam mail has also gradually increased. Indiscriminate sending, in particular, occurs when spam mail is sent using smart phones or tablets connected to wireless networks. Spam mail consists of approximately 68% of mail traffic; however, it is believed that the true percentage of spam mail is at a much more severe level. In order to analyze and detect spam mail, we introduce a technique based on spam mail characteristics and text mining; in particular, spam mail is detected by extracting the linguistic analysis and language processing. Existing spam mail is analyzed, and hidden spam signatures are extracted using text clustering. Our proposed method utilizes a text mining system to improve the detection and error detection rates for existing spam mail and to respond to new spam mail types.

Intelligent Wordcloud Using Text Mining (텍스트 마이닝을 이용한 지능적 워드클라우드)

  • Kim, Yeongchang;Ji, Sangsu;Park, Dongseo;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.325-326
    • /
    • 2019
  • This paper proposes an intelligent word cloud by improving the existing method of representing word cloud by examining the frequency of nouns with text mining technique. In this paper, we propose a method to visually show word clouds focused on other parts, such as verbs, by effectively adding newly-coined words and the like to a dictionary that extracts noun words in text mining. In the experiment, the KoNLP package was used for extracting the frequency of existing nouns, and 80 new words that were not supported were added manually by examining frequency.

  • PDF

A Methodology for Customer Core Requirement Analysis by Using Text Mining : Focused on Chinese Online Cosmetics Market (텍스트 마이닝을 활용한 사용자 핵심 요구사항 분석 방법론 : 중국 온라인 화장품 시장을 중심으로)

  • Shin, Yoon Sig;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.66-77
    • /
    • 2021
  • Companies widely use survey to identify customer requirements, but the survey has some problems. First of all, the response is passive due to pre-designed questionnaire by companies which are the surveyor. Second, the surveyor needs to have good preliminary knowledge to improve the quality of the survey. On the other hand, text mining is an excellent way to compensate for the limitations of surveys. Recently, the importance of online review is steadily grown, and the enormous amount of text data has increased as Internet usage higher. Also, a technique to extract high-quality information from text data called Text Mining is improving. However, previous studies tend to focus on improving the accuracy of individual analytics techniques. This study proposes the methodology by combining several text mining techniques and has mainly three contributions. Firstly, able to extract information from text data without a preliminary design of the surveyor. Secondly, no need for prior knowledge to extract information. Lastly, this method provides quantitative sentiment score that can be used in decision-making.

Analysis of User Requirements Prioritization Using Text Mining : Focused on Online Game (텍스트마이닝을 활용한 사용자 요구사항 우선순위 도출 방법론 : 온라인 게임을 중심으로)

  • Jeong, Mi Yeon;Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.112-121
    • /
    • 2020
  • Recently, as the internet usage is increasing, accordingly generated text data is also increasing. Because this text data on the internet includes users' comments, the text data on the Internet can help you get users' opinion more efficiently and effectively. The topic of text mining has been actively studied recently, but it primarily focuses on either the content analysis or various improving techniques mostly for the performance of target mining algorithms. The objective of this study is to propose a novel method of analyzing the user's requirements by utilizing the text-mining technique. To complement the existing survey techniques, this study seeks to present priorities together with efficient extraction of customer requirements from the text data. This study seeks to identify users' requirements, derive the priorities of requirements, and identify the detailed causes of high-priority requirements. The implications of this study are as follows. First, this study tried to overcome the limitations of traditional investigations such as surveys and VOCs through text mining of online text data. Second, decision makers can derive users' requirements and prioritize without having to analyze numerous text data manually. Third, user priorities can be derived on a quantitative basis.

Investigation of the Possibility of Research on Medical Classics Applying Text Mining - Focusing on the Huangdi's Internal Classic - (텍스트마이닝(Text mining)을 활용한 한의학 원전 연구의 가능성 모색 -『황제내경(黃帝內經)』에 대한 적용례를 중심으로 -)

  • Bae, Hyo-jin;Kim, Chang-eop;Lee, Choong-yeol;Shin, Sang-won;Kim, Jong-hyun
    • Journal of Korean Medical classics
    • /
    • v.31 no.4
    • /
    • pp.27-46
    • /
    • 2018
  • Objectives : In this paper, we investigated the applicability of text mining to Korean Medical Classics and suggest that researchers of Medical Classics utilize this methodology. Methods : We applied text mining to the Huangdi's internal classic, a seminal text of Korean Medicine, and visualized networks which represent connectivity of terms and documents based on vector similarity. Then we compared this outcome to the prior knowledge generated through conventional qualitative analysis and examined whether our methodology could accurately reflect the keyword of documents, clusters of terms, and relationships between documents. Results : In the term network, we confirmed that Qi played a key role in the term network and that the theory development based on relativity between Yin and Yang was reflected. In the document network, Suwen and Lingshu are quite distinct from each other due to their differences in description form and topic. Also, Suwen showed high similarity between adjacent chapters. Conclusions : This study revealed that text mining method could yield a significant discovery which corresponds to prior knowledge about Huangdi's internal classic. Text mining can be used in a variety of research fields covering medical classics, literatures, and medical records. In addition, visualization tools can also be utilized for educational purposes.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.