• Title/Summary/Keyword: Tetrahedral

Search Result 432, Processing Time 0.032 seconds

A Study on Magnetic Properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite ($Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite의 자기적 성질 연구)

  • 조익한;양재석;김응찬;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.397-404
    • /
    • 1996
  • The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ have been studied by X-ray diffractometry and $M\"{o}ssbauer$ Spectroscopy at room temperature. The X-ray diffraction study show that spinel structure is formed in all x, lattice constants linearly increased from $8.3111{$\AA$}~8.4184{$\AA$}({\pm}0.0003)$ with increasing x from 0 to 1, and oxygen parameter increase with increasing x. $M\"{o}ssbauer$ spectrum shows that $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(x=0)$ has two antiparallel magnetic structure due to $Fe^{3+}$ octahedral site and $Fe^{3+}$ tetrahedral site. $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ with $0.2{\leq}x{\leq}0.6$ has magnetic structure of Yafet and Kittel, in particularly, specimen with x=0.6 shows relaxation effect. Specimen with $x{\geq}0.8$ show paramagnetic quadrupole splitting. The isomer shift is independent of x, but quadrupole splittings decrease with increasing x in the range of $0.8{\leq}x{\leq}1$, and nuclear magnetic fields decrease with in¬creasing x in the range of $0{\leq}x{\leq}0.6$. The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ change from ferrimagnetics to pararnagnetics with increasing x.

  • PDF

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.

Crystal Structure of an Acetylene Sorption Complex of Vacuum Dehydrated Fully Cadmiumfiil-Exchanged Zeolite A (완전히 카드뮴 이온으로 교환된 제올라이트 A를 진공 탈수한 후 아세틸렌 기체로 흡착한 결정구조)

  • Koh, Kwang-Nak;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 1991
  • The crystal structure of an acetylene sorption complex of vacuum dehydrated fully Cda+ _exchanged zeolite A has been determined from three-dimensional X-ray diffraction data gathered by counter method. The structure was solved and refined in the cubic space group Pm3m at 294(1) K, a=12.202(3) A and Z=1. We crystal was prepared by dehydration at 723 K and 2.67×104 Pa for 2 days, followed by exposure to 1.60×104 Pa of acetylene gas at 298(1) K. All six Cd2+ions per unit cell are associated with 6-oxgen rings of the aluminosilicate framework. They are distributed over two distinguished threefold axes of unit cell; two of these Cd2+ ions are recessed 0.694 into the sodalite unit from (111) plane of three 0(3)'s and each approaches three framework oxides; the other four Cd2+ ions extend approximately 0.586A into the large cavity. The four Cd2+ ions are in a near tetrahedral environment, 2.220(9)A from·three framework oxide ions and 2.74(7) A from each carbon atom of an acetylene molecule(which is here counted as a monodentate ligand). Full matrix least squares refinement converged to the final error indices R1=0.093 and R2=0.105 using the 292 independent reflections for which I>3σ(I).

  • PDF

Effects of Vanadium Doping on Magnetic Properties of Inverse Spinel Fe3O4 Thin Films (역스피넬 Fe3O4 박막의 바나듐 도핑에 따르는 자기적 성질 변화)

  • Kim, Kwang-Joo;Choi, Seung-Li;Park, Young-Ran;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Effects of V substitution of Fe on the magnetic properties of $Fe_3O_4$ have been investigated by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), conversion electron Mossbauer spectroscopy (CEMS), and vibrating sample magnetometry (VSM) measurements on sol-gel-grown films. XRD data indicates that the $V_xFe_{3-x}O_4$ films maintain cubic structure up to x=1.0 with little change of the lattice constant. Analyses on V 2p and Fe 2p levels of the XPS data indicate that V exist as $V^{3+}$ mostly in the $V_xFe_{3-x}O_4$ films with the density of $V^{2+}$ ions increasing with increasing V content. Analyses on the CEMS data indicate that $V^{3+}$ ions substitute tetrahedral $Fe^{3+}$ sites mostly, while $V^{2+}$ ions octahedral $Fe^{2+}$ sites. Results of room-temperature VSM measurements on the films reveal that the saturation magnetization for the x=0.14 sample is larger than that of $Fe_3O_4$, while it becomes smaller than that of $Fe_3O_4$ for $x{\geq}0.5$. The coercivity of the $V_xFe_{3-x}O_4$ films is found to increase with x, attributed to the increase of anisotropy by the substitution of $V^{2+}(d^3)$ ions into the octahedral sites.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Kinetics and Hydrolysis Mechanism of Herbicidal N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide Derivatives (제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응 메카니즘)

  • Lee, Chan-Bog;Ryu, Jae-Wook;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.455-462
    • /
    • 1995
  • The new six herbicidal N-[(pyrimidin-2-yl)aminocarbonyl]-2-substituted-6-(1-hydroxy-2-fluoroethyl)benzenesulfonamide derivatives(S) were synthesized and rate constants for the hydrolysis of thier in the range of pH $1.0{\sim}10.0$ have been studied in 15%(v/v) aqueous acetonitrile solution at $45^{\circ}C$. From the basis of the results, pH-effect, solvent effect, ortho-substituent effect, thermodynamic parameters(${\Delta}H^{\neq}$ & ${\Delta}S^{\neq}$), pKa constant(4.80), rate equation, analysis of hydrolysis products(2-(1-hydroxy-2-fluoroethyl)benzenesulfonamide & 4,6-dimethoxyaminopyrimidine), it may be concluded that the general acid catalyzed hydrolysis through $A-S_E2$ mechanism and specific acid catalyzed hydrolysis through A-2 type(or $A_{AC}2$) mechanism proceeds via conjugate acid($SH^+$) and tetrahedral intermediate(I) below pH 8.0, whereas, above pH 9.0, the general base catalyzed hydrolysis by water molecules(B) through $(E_1)_{anion}$ mechanism proceeds via conjugate base(CB). In the range between $pH\;7.0{\sim}pH\;9.0$, these two reactions occur competitively.

  • PDF

Microwave-Syntheses of Zeolitic Imidazolate Framework Material, ZIF-8 (마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성)

  • Park, Jung-Hwa;Park, Seon-Hye;Jhung, Sung-Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2009
  • One of zeolitic imidazolate framework materials (ZIF), ZIF-8, has been synthesized with microwave irradiation and conventional electric heating at $140{\sim}180^{\circ}C}$. ZIFs are porous crystalline materials and are similar to metal organic framework (MOF) materials because both ZIFs and MOFs are composed of both organic and metallic components. ZIFs are very stable and similar to zeolites because ZIFs have tetrahedral networks. ZIF-8, with a decreased crystal size, can be synthesized rapidly with microwave irradiation. The microwave synthesis of ZIF-8 is completed in 4 h at $140{^{\circ}C}$ and the reaction time is decreased by about 5 times compared with the conventional electric heating. The ZIF-8 obtained by microwave heating has larger surface area and micropore volume compared with the ZIF-8 synthesized with conventional electric heating. It can be confirmed that ZIF-8s show type-I adsorption isotherms, explaining the microporosity of the ZIF-8s. Based on FTIR and TGA results, it can be understood that the ZIF-8s have similar bonding and thermal characteristics irrespective of heating methods such as microwave and conventional heating.

Neutron Diffraction and Mössbauer Studies of Superexchange Interaction on Al Substituted Co-ferrite (Al이 치환된 Co 페라이트에 관한 뫼스바우어 분광법 및 중성자 회절 연구)

  • Kim, Sam-Jin;Myoung, Bo-Ra;Kim, Chul-Sung;Baek, Kyung-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.287-292
    • /
    • 2006
  • Al substituted $CoAl_{0.5}Fe_{1.5}O_{4}$ has been studied with x-ray and neutron diffraction, $M\"{o}ssbauer$ spectroscopy and magnetization measurements. $CoAl_{0.5}Fe_{1.5}O_{4}$ revealed a cubic spinel structure of ferrinmagnetic long range ordering at room temperature, with magnetic moments of $Fe^{3+}(A)(-2.29{\mu}_{B}),\;Fe^{3+}(B)(3.81\;{\mu}_{B}),\;Co^{2+}(B)(2.66{\mu}_{B})$, respectively. The temperature dependence of the magnetic hyperfine field in $^{57}Fe$ nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the $N\'{e}el$ theory of magnetism. In the sample of $CoAl_{0.5}Fe_{1.5}O_{4}$, the interaction A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B}=-19.3{\pm}0.2k_{B}\;and\;J_{A-A}=-21.6{\pm}0.2k_{B}$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B}=3.8{\pm}0.2k_{B}$.

Analysis on Optical Properties of Transition-metal Substituted Ferromagnetic T0.2Fe2.8O4 (T = V, Cr, Mn) Compounds (전이금속 원소가 치환된 준강자성체 T0.2Fe2.8O4(T = V, Cr, Mn) 화합물의 광학적 성질 분석)

  • Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.56-60
    • /
    • 2011
  • Optical properties of $T_{0.2}Fe_{2.8}O_4$ (T = V, Cr, Mn) thin films derived from ferrimagnetic $Fe_3O_4$ were investigated by spectroscopic ellipsometry in the 1~8 eV photon-energy range. The difference in optical-absorption spectrum between the ternary compounds and $Fe_3O_4$ was analyzed based on preferable sites in spinel structure and iconicity of the doped V, Cr, and Mn ions. The observed absorption spectra from $Fe_3O_4$ and the ternary compounds can be interpreted as mainly due to charge-transfer transitions of Fe d electrons characterized by absorption structures with wide energy width. Also, the observed absorption structures with narrow energy width can be interpreted as due to crystal-field transitions between different d electron configurations of tetrahedral $Fe^{3+}(d^5)$ ion. The transitions were described in terms of spin-polarized electronic states of $Fe_3O_4$.

The Study of Hyperfine Fields for Co0.9Zn0.1Cr1.9857Fe0.02O4 (Co0.9Zn0.1Cr1.9857Fe0.02O4 물질의 초미세자기장 연구)

  • Choi, Kang-Ryong;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-42
    • /
    • 2008
  • [ $AB_2X_4$ ](A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$