Browse > Article
http://dx.doi.org/10.5012/jkcs.2003.47.6.553

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)  

Zhao, Pu Su (Materials Chemistry Laboratory, Nanjing University of Science and Technology)
Zhao, Zhan Ru (New Materials & Function coordination Chemistry Laboratory. Qingdao University of Science and Technology)
Jian, Fang Fang (New Materials & Function coordination Chemistry Laboratory. Qingdao University of Science and Technology)
Lu, Lu De (Materials Chemistry Laboratory, Nanjing University of Science and Technology)
Publication Information
Abstract
The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.
Keywords
Isopolyoxomolybdate; Tetrabutylammonium; Crystal Structure; Thermalstability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Prosser-Mccartha, C. M.; Kadkhodayan, M.; Williamson, M. M.; Bouchard, D. A; Hill, C. L. J. Chem, Soc., Chem. Commun. 1986, 1747.
2 Willamson, M. M.; Boouchard, D. A; Hill, C. L. Inorg. Chem. 1987, 26, 1436.   DOI
3 Hill, C. L; Bouchard, D. A.; Kadkhodayan, M.; Willamson, M. M.; Schrnidt, J. A.; Hilinski, E. F. J. Am. Chem. Soc. 1988, 110, 5471.   DOI
4 Attanasio, D.; Bonamico, M.; Fares, Y.; Imperatori, P.; Suber, L. J. Chem, Soc., Dalton Trans, 1990, 3221.
5 Attanasio, D.; Bonarnico, M.; Fares, V.; Sube, L. J.Chem. Soc., Dalton Trans. 1992, 2523.
6 Xu, X. X.; You, X. Z.; Wang, X. Polyhedron, 1994, 13, 1011.   DOI   ScienceOn
7 Pope, M. T.; Muller, A. Angew. Chem. Int. Ed. Eng. 1991, 30, 34.   DOI
8 Launary, J. P. J. Inorg. Nucl. Chem 1976, 38, 807.   DOI   ScienceOn
9 Xu, X. X.; You, X. Z.; Wang, X. Acta Chemica Scandinavica. 1995, 5.
10 Sheldrick, G. M. Actc Cryst., Sect. A 1969, 46, 467.
11 Sheldrick, G. M. SHELXTL97, Program for Crystal Structure refinement, University of Gottingen, Germany, 1993.
12 Wilson, A. J. International Table for X-ray Crystallography, volume C, 1992; Kluwer Academic Publishers, Dordrecht: Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222) respectively.
13 Fuchs, S.; Fretwald, W; Hartl, H. Acta Crystallogr., Sect. B. 1978, 34, 1764.   DOI
14 Leegg, W.; Sheldrick, G. M. Acta Crystallogr., Sect. B. 1982, 2906.
15 Steiner Th. Cryst. Rev, 1996, 6, 1.   DOI   ScienceOn
16 Jeffrey, G. A.; Maluszynska, H.; Mitra J.; Int. J. Biol. Macromol. 1985, 7, 336.   DOI   ScienceOn
17 Ohashi, Y.; Yanagi, K.;Sasads, Y.; Yamase, T. Bull. Chem. Soc. Jpn. 1982, 55, 1254.   DOI