• Title/Summary/Keyword: Testing & Evaluation Method

Search Result 1,052, Processing Time 0.057 seconds

Model-Based Architecture Design of the Range Safety Process for Live Fire Test with Enhanced Safety (실사격 시험 프로세스의 안전성 강화를 위한 MBSE 기반 아키텍처 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."

IN VITRO EVALUATION OF FRACTURE RESISTANCE OF VARIOUS THICKNESS FIBER- REINFORCED COMPOSITE INLAY FPD

  • Yi Yang-Jin;Yoon Dong-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.762-771
    • /
    • 2003
  • Statement of problem. In dentistry, the minimally prepared inlay resin-bonded fixed partial denture (FPD) made of new ceromer / fiber-reinforced composite (FRC) was recently introduced. However, the appropriate dimensions for the long-term success and subsequent failure strength are still unknown. Purpose. The aim of this study was to investigate the most fracture-resistible thickness combination of the ceromer / FRC using a universal testing machine and an AE analyzer. Material and Methods. A metal jig considering the dimensions of premolars and molars was milled and 56-epoxy resin dies, which had a similar elastic modulus to that of dentin, were duplicated. According to manufacturer's instructions, the FRC beams with various thicknesses (2 to 4 mm) were constructed and veneered with the 1 or 2 mm-thick ceromers. The fabricated FPDs were luted with resin cement on the resin dies and stored at room temperature for 72 hours. AE (acoustic emission) sensors were attached to both ends, the specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. The AE and failure loads were recorded and analyzed statistically. Results. The results showed that the failure strength of the ceromer/FRC inlay FPDs was affected by the total thickness of the connectors rather than the ceromer to FRC ratio or the depth of the pulpal wall. Fracture was initiated from the interface and propagated into the ceromer layer regardless of the change in the ceromer / FRC ratio. Conclusion. Within the limitations of this study, the failure loads showed significant differences only in the case of different connector thicknesses, and no significant differences were found between the same connector thickness groups. The application of AE analysis method in a fiber-reinforced inlay FPD can be used to evaluate the fracture behavior and to analyze the precise fracture point.

Analyzing Machine Learning Techniques for Fault Prediction Using Web Applications

  • Malhotra, Ruchika;Sharma, Anjali
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.751-770
    • /
    • 2018
  • Web applications are indispensable in the software industry and continuously evolve either meeting a newer criteria and/or including new functionalities. However, despite assuring quality via testing, what hinders a straightforward development is the presence of defects. Several factors contribute to defects and are often minimized at high expense in terms of man-hours. Thus, detection of fault proneness in early phases of software development is important. Therefore, a fault prediction model for identifying fault-prone classes in a web application is highly desired. In this work, we compare 14 machine learning techniques to analyse the relationship between object oriented metrics and fault prediction in web applications. The study is carried out using various releases of Apache Click and Apache Rave datasets. En-route to the predictive analysis, the input basis set for each release is first optimized using filter based correlation feature selection (CFS) method. It is found that the LCOM3, WMC, NPM and DAM metrics are the most significant predictors. The statistical analysis of these metrics also finds good conformity with the CFS evaluation and affirms the role of these metrics in the defect prediction of web applications. The overall predictive ability of different fault prediction models is first ranked using Friedman technique and then statistically compared using Nemenyi post-hoc analysis. The results not only upholds the predictive capability of machine learning models for faulty classes using web applications, but also finds that ensemble algorithms are most appropriate for defect prediction in Apache datasets. Further, we also derive a consensus between the metrics selected by the CFS technique and the statistical analysis of the datasets.

Development of Advanced Dynamic Cone Penetration Test Apparatus and Its Application Performance Evaluation (개량식 동적 콘 관입시험기의 개발 및 적용성 평가)

  • Kim, Uk-Gie;Zhuang, Li;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.119-131
    • /
    • 2014
  • For quick and accurate ground investigation in wide construction site being not easy to access, advanced dynamic cone penetration test equipment was developed based on widely used equipment abroad. Advantages of existing equipment of portability and simple testing method were reflected in the new developed equipment. Meanwhile, by extending connection of lower rod, penetration depth is raised to 6m from 1 m of the existing equipment. Moreover, by assembly of hammer (2+3+3kg) and cone (3 types) etc., it is possible to perform test under the same conditions with those by German and Japan dynamic cone penetration test equipment (Tsukuba, PWRI and SH types). Auxiliary equipment was applied to make sure of perpendicularity as penetration depth increases. Applicability of the new developed equipment was evaluated through tests on various fields and its reliability was verified.

The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test (가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.

Evaluation of a Aluminum Hyperbolic Mirror with the Diameter of 300 mm(f/1.98) by Using the Autostigmatic Null Lens System Assembled in a Fixed Tube Mount (경통고정식 자동무수차점 널 렌즈 테스트법을 이용한 직경 300 mm(f/1.98) 알루미늄 쌍곡면 거울의 형상측정)

  • Lee, Young-Hun;Jo, Jae-Heung;Rim, Cheon-Seog;Yang, Sun-Choel;Kim, Geon-Hee;Won, Jong-Ho;Jeong, Youn-Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.412-419
    • /
    • 2006
  • We design and fabricate an autostigmatic null lens system assembled in a fixed tube mount in order to evaluate the shape of an aluminum hyperbolic mirror with the diameter of 300 mm and the f-number of 1.98, which is fabricated by a high precision aspherical DTM (diamond turning machine). Also, we evaluate the degree of shape of the aspherical mirror by this autostigmatic null lens testing method. The autostigmatic null lens system assembling in a fixed tube mount has several advantages of light weight, good mechanical stability, etc. The permissible fabricating limits of null lenses and a mount are determined by considering various tolerances to assure the measurement reliability.

Project Design Plan for Drone Photogrammetry (드론사진측량을 위한 프로젝드 설계방안)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.239-246
    • /
    • 2019
  • The drone photogrammetry is actively utilized for obtaining highly accurate spatial information and other various monitoring purposes. It is general to plan the drone photogrammetry by referring to previous experiences or cases in order to obtain the required accuracy, but the drone photogrammetry is often carried out again due to poor accuracy. Since the required spatial accuracy of the drone photogrammetry process result becomes the means of objective evaluation regardless of the type of result, it should be determined carefully. Therefore, it is necessary to determine flight height, overlap, number and arrangement of ground control point, and exterior orientation factor acquisition method in order to meet the required 3D positional accuracy for the design of drone photogrammetry project. In this study, previous study cases for the analysis of drone photogrammetry accuracy were carefully analyzed and verified by applying such cases to testing area, and design guideline of drone photogrammetry project for a small area was prepared based on the analysis result. The presented project design guideline is expected to be a great help to business practice although it is not perfect, and if the design guideline is prepared through comprehensive analysis in future, it would be possible to provide a perfect manual.

Suggestion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test (펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안)

  • Lee, Jung-Soo;Jang, Kyong-Pil;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • In this study, a new lab-scale test equipment was developed to evaluate the variation of concrete workability after pumping. The equipment was designed to simulate the pressure and shearing applied to concrete during actual pumping. In order to examine the feasibility of evaluating variation of concrete workability through lab-scale test equipment, real-scale pumping tests and lab-scale tests were performed together. The design strength of concrete used in the both tests was 24, 35, and 60MPa, and the length of pipe used in pumping tests was 130, 304, and 518m. The lab-scale tests were performed in consideration of actual pumping conditions(pressure, shearing, and pumping duration time). The workability(slump or slum flow) of concrete was measured before test, after the pumping test, and after lab-scale test. In all tests, workability of all concrete mixtures decreased. In addition, the results of both tests were measured greatly similarly.

Performance Analysis of Ink for Digital Textile Printing Using Natural Indigo (천연 인디고를 활용한 Digital Textile Printing용 잉크의 성능 분석)

  • Lee, Won Kyoung;Sung, Eun Ji;Moon, Joung Ryul;Ahn, In Yong;Yoon, Kwang Ho;Park, Yoon Cheol;Kim, Jong Hoon
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.202-209
    • /
    • 2021
  • Natural dyes are more expensive than synthetic dyes and the dyeing process, which is mainly immersion of dye, is complicated. For this reason, relatively small-scale production methods were predominant. However, awareness and interest in environmental sustainability is rising globally, and the use of synthetic dyes causes various environmental problems such as wastewater and CO2 emission, so the consumption of natural dyes is increasing. In addition, interest in digital textile printing, an eco-friendly dyeing method that can produce products of various designs and uses less water, is growing. In this study, natural indigo dye (Indigofera tinctoria) was used as a raw material for Digital Textile Printing ink, and 14C (Biocarbon) present in it was measured to confirm whether it was derived from natural ingredients. The performance was confirmed by testing the pH, viscosity, electrical conductivity, surface tension, and particle size analysis of natural indigo ink. In addition, the performance of natural indigo DTP ink and printing fabric was evaluated by inspecting the change in color fastness and corresponding index substances before and after digital printing with natural indigo DTP ink on textiles. Through this, the possibility of commercialization of DTP ink and printing fabric using natural indigo was confirmed.

Evaluation of Flexural Strength of 3D Printing Resin According to Post-Curing Equipment and Time (후경화기와 경화시간에 따른 3D 프린팅 레진의 굴곡강도 평가)

  • Hae-Bom Kim;Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.629-637
    • /
    • 2023
  • This study aimed to evaluate the effect of post-curing equipment and time on the flexural strength of 3D printing resins produced by a liquid crystal display(LCD) printer. The three 3D printing resins(DENTCA Denture Teeth, DT; C&B 5.0 hybrid, CH; C&B Permanent A2, CP) were divided into four groups according to post-curing time(10 min and 30 min) and equipment with or without vacuum treatment. For the three-point flexural strength test and biaxial strength test were prepared by method according to ISO 10477, ISO 6872, respectively. Flexural strength was measured with universal testing machine. Comparison between post-curing time of each post-curing equipment was analyzed by independent sample t-test and Mann-Whitney U test(α=.05), and comparison between groups according to each 3D printing resin was performed by Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(α=.05). The flexural strength of the resin post-curing under vacuum was higher than that of the resin post-curing in air. In the comparison according to the post-curing time, in the case of the post-curing equipment without vacuum, the 30 minute curing time showed significantly higher flexural strength than the 10 minute curing time, except for the biaxial flexural strength of CH(P<.05). In the post-curing equipment with vacuum, the three-point flexural strength of all 3D printing resins(DT, CH, and CP) showed a higher value at 30 minute curing time than at 10 minute curing time.