• Title/Summary/Keyword: Test Statistic

Search Result 795, Processing Time 0.023 seconds

Test of Normality Based on the Transformed Lorenz Curve

  • Kang, Suk-Bok;Cho, Young-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.901-908
    • /
    • 1999
  • Using the Transformed Lorenz curve which is introduced by Cho et al.(1999) we propose the test statistic for testing of normality that is very important test in statistical analysis and compare the proposed test statistic with the Shapiro and Wilk's W test statistic in terms of the power of test through by Monte Carlo method.

  • PDF

Tests based on EDF statistics for randomly censored normal distributions when parameters are unknown

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.431-443
    • /
    • 2019
  • Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly consider test statistics based on the empirical distribution function (EDF) to test normal distributions with unknown location and scale parameters when data are randomly censored. The most famous EDF test statistic is the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the $Cram{\acute{e}}r-von$ Mises and the Anderson-Darling statistic are well known. The $Cram{\acute{e}}r-von$ Mises statistic is generalized to randomly censored cases by Koziol and Green (Biometrika, 63, 465-474, 1976). In this paper, we generalize the Anderson-Darling statistic to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered among the three EDF statistics we take into account.

Goodness-of-fit tests for a proportional odds model

  • Lee, Hyun Yung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1465-1475
    • /
    • 2013
  • The chi-square type test statistic is the most commonly used test in terms of measuring testing goodness-of-fit for multinomial logistic regression model, which has its grouped data (binomial data) and ungrouped (binary) data classified by a covariate pattern. Chi-square type statistic is not a satisfactory gauge, however, because the ungrouped Pearson chi-square statistic does not adhere well to the chi-square statistic and the ungrouped Pearson chi-square statistic is also not a satisfactory form of measurement in itself. Currently, goodness-of-fit in the ordinal setting is often assessed using the Pearson chi-square statistic and deviance tests. These tests involve creating a contingency table in which rows consist of all possible cross-classifications of the model covariates, and columns consist of the levels of the ordinal response. I examined goodness-of-fit tests for a proportional odds logistic regression model-the most commonly used regression model for an ordinal response variable. Using a simulation study, I investigated the distribution and power properties of this test and compared these with those of three other goodness-of-fit tests. The new test had lower power than the existing tests; however, it was able to detect a greater number of the different types of lack of fit considered in this study. I illustrated the ability of the tests to detect lack of fit using a study of aftercare decisions for psychiatrically hospitalized adolescents.

Nonparametric Granger Causality Test

  • Jeong, Ki-ho;Nishiyama, Yoshihiko
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.195-210
    • /
    • 2007
  • This paper develops a consistent nonparametric test for Granger causality in the context of strong-mixing process, which covers a large class of stationary processes including ARMA and ARCH models. The previously proposed tests require absolute regularity ($\beta$-mixing) more stringent than the strong-mixing condition. We prove the consistency of the test under a high level assumption on the approximation error of U statistic by its projection. Due to the sample splitting, the test statistic we propose is asymptotically normally distributed under the null.

  • PDF

Page Type Test for Ordered Alternatives on Multiple Ranked Set Samples.

  • Kim, Dong-Hee;Kim, Young-Cheol;Kim, Hyun-Gee
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.479-486
    • /
    • 1999
  • In this paper we propose the test statistic for ordered alternatives on multiple ranked set samples. Since the proposed test statistic is Page type its asymptotic properties are easily obtained. From the simulation works we calculate the power of test statistic($P_{RSS}$) under the underlying distributions such as uniform normal double exponential logistic and Cauchy distribution.

  • PDF

Exponentiality Test of the Three Step-Stress Accelerated Life Testing Model based on Kullback-Leibler Information

  • Park, Byung-Gu;Yoon, Sang-Chul;Lee, Jeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.951-963
    • /
    • 2003
  • In this paper, we propose goodness of fit test statistics based on the estimated Kullback-Leibler information functions using the data from three step stress accelerated life test. This acceleration model is assumed to be a tampered random variable model. The power of the proposed test under various alternatives is compared with Kolmogorov-Smirnov statistic, Cramer-von Mises statistic and Anderson-Darling statistic.

  • PDF

A Robust Heteroscadastic Test for ARCH Models

  • Kim, Sahm-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.441-447
    • /
    • 2004
  • Li and Mak (1994) developed a test statistic for detecting the non-linearity and the heteroscedasticity of the time series data. But it is well known that the test statistic may be very sensitive in case of heavy-tailed distributions of the errors. Jiang et al.(2001) suggested the robust method for ARCH models but the calculation procedures for the estimation are very complicated. We suggested the robust method based on Huber's function and our method works quite well rater than the Li and Mak(1994). Also our method is relatively easy to calculate the test statistic.

  • PDF

A nonparametric test for parallelism of regression lines against ordered alternatives (회귀직선 기울기의 순서성에 대한 비모수적 검정법)

  • 송문섭;이기훈;김순옥
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.401-408
    • /
    • 1993
  • This paper suggests a nonparametric test for the parallelism of several regression lines against ordered alternatives. The test statistic is an extension of the Potthoff statistic. The asymptotic variance of the proposed statistic is estimated by Bootstrap method. The proposed test are compared with the Adichie's parametric and nonparametric tests.

  • PDF

The Chi-squared Test of Independence for a Multi-way Contingency Table wish All Margins Fixed

  • Park, Cheolyong
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.2
    • /
    • pp.197-203
    • /
    • 1998
  • To test the hypothesis of complete or total independence for a multi-way contingency table, the Pearson chi-squared test statistic is usually employed under Poisson or multinomial models. It is well known that, under the hypothesis, this statistic follows an asymptotic chi-squared distribution. We consider the case where all marginal sums of the contingency table are fixed. Using conditional limit theorems, we show that the chi-squared test statistic has the same limiting distribution for this case.

  • PDF

Test for Discontinuities in Nonparametric Regression

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.709-717
    • /
    • 2008
  • The difference of two one-sided kernel estimators is usually used to detect the location of the discontinuity points of regression function. The large absolute value of the statistic imply discontinuity of regression function, so we may use the difference of two one-sided kernel estimators as the test statistic for testing null hypothesis of a smooth regression function. The problem is, however, we only know the asymptotic distribution of the test statistic under $H_0$ and we hardly expect the good performance of test if we rely solely on the asymptotic distribution for determining the critical points. In this paper, we show that if we adjust the bias of test statistic properly, the asymptotic rules hold for even small sample size situation.