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Abstract

The chi-square type test statistic is the most commonly used test in terms of mea-
suring testing goodness-of-fit for multinomial logistic regression model, which has its
grouped data (binomial data) and ungrouped (binary) data classified by a covariate
pattern. Chi-square type statistic is not a satisfactory gauge, however, because the
ungrouped Pearson chi- square statistic does not adhere well to the chi-square statis-
tic and the ungrouped Pearson chi-square statistic is also not a satisfactory form of
measurement in itself. Currently, goodness-of-fit in the ordinal setting is often assessed
using the Pearson chi-square statistic and deviance tests. These tests involve creat-
ing a contingency table in which rows consist of all possible cross-classifications of the
model covariates, and columns consist of the levels of the ordinal response. I exam-
ined goodness-of-fit tests for a proportional odds logistic regression model-the most
commonly used regression model for an ordinal response variable. Using a simulation
study, I investigated the distribution and power properties of this test and compared
these with those of three other goodness-of-fit tests. The new test had lower power than
the existing tests; however, it was able to detect a greater number of the different types
of lack of fit considered in this study. I illustrated the ability of the tests to detect lack
of fit using a study of aftercare decisions for psychiatrically hospitalized adolescents.

Keywords: Goodness-of-fit, Hosmer-Lemeshow test, ordinal logistic regression, ordinal
models, ordinal response, proportional odds.

1. Introduction

An ordinal logistic regression model describes the relationship between an ordinal response
variable (from low to high)-such as the level of the fear of crime classified as not at all fearful,
not very fearful, somewhat fearful, or very fearful-and one or more explanatory variables
(covariates). It is different from the multinomial logistic regression model, which does not
take the ordering of the response categories into account. Several different ordinal models can
be used: the proportional odds, the constrained and unconstrained partial-proportional odds,
the adjacent-category, the continuation-ratio, and the stereotype logistic models (Hosmer
and Lemeshow, 2000; Agresti, 2010). The most frequently used model is the proportional
odds model, also called the (constrained) cumulative logit or the parallel-lines model. It
is available in most general purpose statistical software packages, such as SAS. Lee (2012)
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compared the estimators of parameters in the GEE approach for the ordinal response and
Kim and Lee (2013) also discussed about proportional hazard model.

All regression models for categorical response variables should be evaluated for fit and
their adherence to model assumptions. The test by Hosmer-Lemeshow (1980) is available in
most software packages and has gained widespread use.

For ordinal regression models, few methods exist to assess goodness-of -fit, and no general
goodness-of-fit test is widely available in software packages. Lipsitz et al. (1996) proposed
a goodness-of-fit test, partly based on the Hosmer-Lemeshow approach, for a general or-
dinal regression model. The test provides no contingency table of observed and estimated
frequencies and is not always computable for small sample sizes. Pulkstenis and Robinson
(2004) modified the Pearson chi-square and deviance statistics so that they could be used for
testing goodness-of-fit in ordinal models that include continuous covariates. One limitation
with that approach was that the regression model needed to include both continuous and
categorical covariates.

Also, if many categorical covariates were present, the performance of the tests may suffer
because of the large number of cells from which the Pearson chi-square and deviance statistics
were calculated.

The purpose of this paper is to present a new goodness-of-fit test for the proportional odds
model. I used the approach first suggested by Hosmer and Lemeshow (1980) to partition
the data into suitable groups. In Section 3, I cross-classified the groups with the response
categories and test goodness of-fit using the Pearson chi-square statistic on the resulting
table of observed and estimated frequencies. One benefit of using the Hosmer-Lemeshow
method was that I could now assess goodness-of-fit using the same approach for binary,
multinomial, and ordinal logistic regression models. In Section 4, I investigated the power
of the new test and compare it with the tests by Lipsitz et al. (1996) and Pulkstenis and
Robinson (2004). I used a study of determinants of aftercare placement for psychiatrically
hospitalized adolescents (Fontanella, 2008) to illustrate the application of the tests.

2. The proportional odds model

Let Y denote an ordinal response variable with ¢ levels (1,--- ,¢), and let = be a vector
of p explanatory variables, from now on called covariates. The proportional odds model
compares the probability of an equal or smaller response (Y < j) with the probability of a
larger response (Y > j), both conditional on the covariates, through ¢ — 1 logits

P(Y < jlz)

(x)=log | =——F— 2.1

:aj+ﬂlx1+"'+ﬁpmp7 j: 17 ,C—l.
The regression coeflicients /31, - - , 3, are constant across the logits, whereas the intercepts
are such that a3 < as < -+ < a._1. It follows from (2.1) that
e9i(T)
<jlg)=—— j=1,---,c— 1. .
P < jla) = 1 g =L e 1 (2:2)
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Let m; = P(Y = j|x) denote the conditional probability of a response equal to j given x.
It follows from (2.2) that

= P(Y < 1|z),
and

Te=1—PY <c—1lx).

Suppose that I have a sample of n independent observations, denoted by (x;,y;),7 =
1,---,n. Let m;; = P(Y = j|a;). For notational simplicity, let §;; denote binary indicator
variables, such that g;; = 1 if y; = j and g;; = 0 given that (¢ = 1,--- ,n;j = 1,--- ,¢).
The proportional odds model may be fitted and estimates of a and 8 calculated by standard
maximum likelihood methods (Hosmer and Lemeshow, 2000; Agresti, 2010). Following the fit
of the model, I denote the estimated probabilities of each response level for each observation
as .

3. Derivation of test statistics

3.1. Lipsitz test

Lipsitz et al. (1996) proposed a goodness-of-fit test for ordinal regression models, includ-
ing the proportional odds model. Suppose that the estimated probabilities 7;; have been
calculated from a fitted ordinal regression model, an ordinal score to each observation is
assigned using equally spaced integer weights:

Si:%ﬂ+2%ig+"'+6%¢c,iil,"',n. (31)

The observations are organized into g groups based on the ordinal score s;, such that
group 1 contains the n/g observations with the lowest scores and group g contains the n/g
observations with the highest scores. Create g — 1 binary indicator variable I, such that

7 {1 if observation i is in group k
ik =

0 otherwise

fori=1,---,nand k=1,--- ,9g— 1. A new ordinal regression model is fitted that includes
indicator variables:

gi(@)=a;+Bixci+ -+ Bprp+ i+ -+ yg-1dg-1, =1, , c— 1L (3.2)

When the fitted model is the correct model, v1 = 0,--- ,74-1 = 0. Let L; and Lo denote
the log likelihoods of the fitted models (2.1) and (3.2), respectively. A goodness-of-fit test
is obtained by comparing the value of the likelihood ratio statistic —2(L; — Lg) with the
chi-square distribution with g — 1 degrees of freedom. Lipsitz et al. (1996) suggested that
the number of groups should be chosen such that 6 < g < n/5c. I refer to the test as the
Lipsitz test.

Lipsitz et al. (1996) also suggested, but did not illustrate, using scores s; = 7;1. They
pointed out that since 7; was a monotone function of the linear predictor, this grouping was
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equivalent to a grouping based on ,@a: Lipsitz et al. (1996) also pointed out that under the
null hypothesis, their test was a linear combination of the differences (Or; — Ey;),

Owj = > Wy (3.3)

1eQy
Eyj= Y _ 7, (3.4)
1eQy,
for k =1,---,g9, j = 1,--+ ,¢, and where ) denotes indices of the n/g observations in

group k.

3.2. Pulkstenis and Robinson tests

If only categorical covariates are present, I can construct a contingency table of observed
and estimated frequencies, where the rows consist of all possible covariate patterns and
the columns represent the response levels. Goodness-of-fit can then be assessed using the
Pearson chi-square and deviance statistics. When continuous covariates are present, this
approach fails because the number of covariate patterns approaches (or is equal to) n,
the sample size, making the contingency table sparsely populated.Pulkstenis and Robinson
(2004) suggested an extension of the Pearson chi-square and deviance statistics that allowed
continuous covariates. First, the covariate patterns using the categorical covariates only
were determined and any unobserved patterns were disregarded. The ordinal score (3.1) was
calculated and each covariate pattern was split into two on the basis of the median ordinal
score within each pattern. A table of observed and estimated frequencies was constructed
based on the cross-classification of covariate patterns with response levels. From this table,
the modified Pearson chi-square and deviance statistics are obtained as

2 K ¢
B @9
: lkj
and

D? =2 03 Oty
= ZZZOW log ﬁk; (3.6)

where [ indexes the two subgroups based on the ordinal scores, K is the number of observed
covariate patterns due to the categorical covariates, and c¢ is the number of response levels.
The reference distribution for both statistics is the x? distribution with (2K — 1)(c — 1) —
Peat — 1 degrees of freedom, where p.,; is the number of categorical covariates. For example,
if one fits a model with three dichotomous covariates and one covariate with five levels
modeled with four design variables, then p..; = 7. I refer to the two tests defined by (3.5)
and (3.6) as the PR(x?) and PR(D?) tests and collectively as the Pulkstenis-Robinson (PR)
tests.

3.3. Proposed test statistic

The test I proposed in this paper was based on an approach first suggested by Hosmer
and Lemeshow (1980) for binary logistic regression and later adapted to multinomial logistic
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regression by Fagerland et al. (2008). In the binary setting (Y = 0, 1), following the fit of
the model, the observations were grouped according to the estimated probabilities of Y = 1.
Usually, 10 groups were formed, often called the deciles of risk. However, the number of
groups (g) could be arbitrary. Within each group, the number of observed and estimated
frequencies were summed, both for Y =0 and Y = 1. A g X 2 contingency table containing
the observed and estimated frequencies could be constructed. The test statistic is the Pear-
son chi-square statistic from that table, and the reference distribution was the chi-square
distribution with g — 2 degrees of freedom (Hosmer and Lemeshow, 1980).

Similarly, after fitting a multinomial logistic regression model (Y = 0,---, ¢ — 1), the
observations are arranged into g groups by the estimated probabilities 1 — 7;9 which has the
complement of the estimated probability of the reference response category (Y = 0). The
observed and estimated frequencies in each group for each response level may be summarized
in a contingency table, now with g rows and ¢ columns. The multinomial test statistic was the
Pearson chi-square statistic from this table, and the reference distribution was the chi-square
distribution with (g — 2)(c — 1) degrees of freedom (Fagerland et al., 2008).

I proposed a similar approach for the proportional odds model. After calculating the es-
timated probabilities 7;;, I computed the ordinal scores (3.1). As for the binary and multi-
nomial settings, I partitioned the observations into g groups, this time based on the ordinal
score, such that group 1 contained the n/g observations with the lowest scores and group
g contains the n/g observations with the highest scores. As noted in Section 3.1, sorting
according to the ordinal score is identical to sorting according to 1 — 7;;. The score was
used to sort and group the observations in the multinomial test (Fagerland et al., 2008).
The observed and estimated frequencies in each group for each response level were denoted
by Oyg; and Ej;j, respectively, as defined in (3.5) and (3.6). Table 3.1 displays the sums of
the observed and estimated frequencies. The ordinal test statistic is the Pearson chi-square
statistic given by

(3.7)

T added additional degrees of freedom to the (g—2)(c—1) of the multinomial test to reflect
the fact that the sum of the estimated frequencies was not equal to the observed frequencies
in each of the ¢ levels of the response. The overall sums of the estimated frequencies and
the observed ones were equal. One additional degree of freedom is lost because of the rank
ordering constraint on the intercepts. Thus, I posited that the degrees of freedom for the
ordinal test were (g —2)(c — 1) + (¢ — 2).

Table 3.1 Observed (Oy;) and estimated (Ej;) frequencies sorted and summed into g groups

G Y =1 Y =2 — Y=c
roup Obs. Est. Obs. Est. Obs. Est. Sum
1 O11 E1 O12 E12 iy O1c Ei. n/g
2 021 Eo O22 Eas e O2c Esc n/g
g Og1 Eg1 Og2 Eg2 - Oge Ege n/g

As the grouping of the observations was based on estimated probabilities, the regression
models needed to have at least as many covariate patterns as the number of groups (g)
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for the T, test to work. I achieved this when there were continuous covariates or several
categorical covariates present. I could assess the fit of models with, for instance, only one,
two, or three dichotomous covariates with the Pearson chi-square and deviance statistics as
i’ve explained in the first paragraph of Section 3.2.

4. Assessing the power of the tests

For the simulations used to check the null distribution of the test statistics, I considered
models with three levels of the response. I designed the simulation study in order for it to
assess the possible effects of sample size (n), covariate distribution, and number of response
levels (c). Three sample sizes were used: n = 100, 150and200. Let x denote a continuous
covariate. In all simulation settings, I distributed x as N (5, 3). Let d denote a dichotomous
covariate distributed as Bernoulli(0.5). T used min(10,n/5¢) as the number of groups for
three Ty tests: Tg, ThpandT12. The number of simulated replications was 10,000 throughout.

And T used 5,000 simulated replications. I outlined the power for two different situations
as outlined in Sections 4.1-4.2.

4.1. Wrong functional form of a continuous covariate

I generated a three-level response variable from the following proportional odds model
gj(z) = a; —0.25e* +0.5d, j =1,2, (4.1)

whereas the fitted model included the term z instead of e”. The intercepts were a; =
[0.0,2.0].

4.2. Omission of an interaction term between a continuous and a dichotomous
covariate

I generated a three-level response variable from the following proportional odds model
gj(z) = a; —0.252 — 1.0d + fszd, j =1,2, (4.2)

where the fitted model excluded the interaction term (83 = 0). The intercepts were o =
[0.0,2.0]. The coefficient 83 was 0.3 and 0.4, corresponding to an increasing difference be-
tween the correct and fitted models.

4.3. Summary of the power results

When the proportional odds model was fitted with an x term instead of the correct e”
term. The empirical powers for the model (4.1) with wrong functional form are presented in
Table 4.1. The power of the proposed statistic T, for the model (4.1) with wrong functional
form is about 30% and 40% at a = 0.05,a = 0.10, respectively. The powers of all tests
increase accordig to the sample sizes.

The power to detect a missing interaction term, both between a continuous and a dichoto-
mous covariate and between two dichotomous covariates, is presented in Table 4.2. The
power of the proposed statistic T, has greater power than the PR tests exept PR(D?). All
the tests have a power greater than 20% for large sample sizes.
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Table 4.1 Power (%) for the detection of a wrong functional form when x is normally distributed

n=100 n=150 n=200
Significance level 5% 10% 5% 10% 5% 10%
T3 23.0 35.0 31.5. 41.0 33.5 44.5
Tio 23.4 31.4 32.6 42.2 33.7 45.4
Ti2 24.0 32.0 33.0 42.5 33.9 46.1
PR(x?) 10.5 22.0 17.5 27.0 19.5 46.5
PR(D?) 20.5 27.0 29.5 40.0 30.0 27.5

Table 4.2 Power (%) for the detection of a missing interaction term between a continuous and
a dichotomous covariate when x is normally distributed and 83 = 0.4

n=100 n=150 n=200
Significance level 5% 10% 5% 10% 5% 10%
T8 15.0 27.0 20.5 31.0 24.0 37.0
Tio 14.9 26.5 19.0 29.9 23.0 36.5
Ti2 14.4 26.0 18.5 29.5 22.5 35.5
PR(X2) 10.5 22.0 16.0 26.5 21.0 39.0
PR(D2) 17.0 31.5 27.5 38.5 33.5 46.5

5. Clinical example: Determinants of aftercare placement

Hosmer et al. (2013) considered ordinal models in some detail and illustrated fitting the
proportional odds model with data from a study reported by Fontanella et al. (2008) on the
influence of clinical and nonclinical factors based on the decision about aftercare services for
psychiatrically hospitalized adolescents. The medical records of 508 adolescents admitted to
three psychiatric hospitals were collected, which included sociodemographics, clinical and
family characteristics, service history, and treatment characteristics.

Table 5.1 Results of fitting a proportional odds model of neuro on
age, age?, gender, race, emot and cust; n=508

df Coeflicient Standard error Wald Chi-Square Pr > |z]

Age 1 1.9733 0.8646 5.2095 0.0225
Age? 1 -0.0687 0.0299 5.2790 0.0216
Gender 1 0.1589 0.0975 2.6579 0.1030
Race 1 0.1842 0.0974 3.5764 0.0586
Emot 1 -0.6723 0.2227 9.1133 0.0025
Cust 1 0.5906 0.2076 8.0945 0.0044
al 1 -13.2021 6.1815 4.5614 0.0327
) 1 -12.2333 6.1774 3.9218 0.0477
as 1 -11.6750 6.1742 3.5734 0.0587

Table 5.2 Observed and estimated frequencies sorted according to the ordinal score and
summed into 10 groups, following the fit in Table 5.1

Group Neuro=1 Neuro=2 Neuro=3 Neuro=4
Obs. Est. Obs. Est. Obs. Est. Obs. Est. Sum
1 42 42.5 7 4.88 1 1.47 1 2.12 51
2 40 40.2 8 6.09 1 1.91 2 2.82 51
3 37 39.0 9 6.66 1 2.13 4 3.19 51
4 38 37.3 7 7.46 1 2.47 5 3.77 51
5 42 35.8 4 7.68 2 2.59 2 4.98 50
6 35 35.5 10 8.26 2 2.84 4 4.42 51
7 28 33.6 12 9.03 4 3.23 7 5.16 51
8 35 32.1 4 9.58 6 3.53 6 5.78 51
9 26 29.2 12 10.5 5 4.14 8 7.11 51
10 27 23.7 8 11.4 6 5.10 9 9.83 50
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Here, I considered only a subset of the variables from that study, and I did not aim to give
a complete assessment of the factors that influenced aftercare placement. I used a model
from these data to illustrate the application of the goodness-of-fit tests under study in this
paper, and the results I provided should be interpreted in that perspective.

First, I fit a proportional odds model using Neuro (neuropsychiatric disturbance: 1=none,
2=mild, 3=moderate, 4=severe) as the response variable and Age (in years, centered about
the sample mean age of 14.3 years), Age? (centered about the mean age), Gender (0=fe-
male, 1=male), Race (0=white, 1=non-white), Emot (emotional disturbance: 0=mild, 1=
severe), and Custd (state custody: 0=no, 1=yes) as covariates. I gave the results in Table
5.1. The results showed that gender, race, emotional disturbance, and not being in state
custody were associated with more severe neuropsychiatric disturbance. The effect of the
model being quadratic in age was that the age at minimum odds of more severe neuropsy-
chiatric disturbance is close to the average age of 14.3 years, and it increased for children
younger or older. I calculated the T} test using 10 groups and obtained p = 0.73. I gave the
contingency table of observed and estimated frequencies in Table 5.2. Neither the p-value
nor an assessment of the contingency table indicated lack of fit. After calculating the Lipsitz
(p = 0.45) and the test by Pulkstenis and Robinson (p = 0.62 and p = 0.39), I found no
evidence of lack of fit for this model.

Table 5.3 Results of fitting a proportional odds model of danger on
age, gender, los, behave and elope; n = 508

df Coeflicient Standard error Wald Chi-Square Pr > |z

Age 1 0.0850 0.0524 2.6306 0.1048
Gender 1 0.2827 0.0943 8.9926 0.0027
LOS 1 -0.00631 0.00282 5.0032 0.0253
Behave 1 -0.5982 0.0546 119.8610 <.0001
Elope 1 0.3211 0.1854 2.9981 0.0834
a1 1 -0.4812 0.8242 0.3409 0.5593
Qg 1 1.3564 0.8237 2.7116 0.0996
a3 1 2.8941 0.8359 12.1305 0.0005

Table 5.4 Observed and estimated frequencies sorted according to the ordinal score and
summed into 10 groups, following the fit inTable 5.3

Group Danger=1 Danger=2 Danger=3 Danger=4
Obs. Est. Obs. Est. Obs. Est. Obs. Est. Sum
1 28 24.8 15 18.0 0 6.06 8 2.06 51
2 16 11.4 18 21.2 7 12.8 10 5.59 51
3 5 6.64 18 18.0 18 16.8 10 9.59 51
4 3 4.48 17 14.7 16 18.3 15 13.5 51
5 1 2.88 11 11.0 19 18.2 19 18.0 50
6 1 2.23 11 9.14 18 17.7 21 21.9 51
7 0 1.63 5 7.11 16 16.2 30 26.0 51
8 0 1.14 4 5.25 17 14.0 30 30.7 51
9 0 0.73 2 3.51 21 10.8 28 35.9 51
10 0 0.39 0 1.93 9 6.78 41 40.9 50

As a second example, I considered the response variable Danger (danger to others; 1=Un-
likely, 2=Possibly, 3=Probably, and 4=Likely), which was an assessment of the danger the
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patients posed to others. In table 5.3, 1 fit a proportional odds model to Danger using Age
(not centered), Gender, LOS (length of stay in hospital, days), Behave (behavioral symp-
tom score 0-9), and Elope (elopement risk; 0=no risk, 1=history of risk) as covariates. The
results showed that gender, age and elopement risk were associated with greater risk of
danger to others, whereas decreasing length of stay and behavior score were associated with
decreasing risk of danger to others. However, before one uses any fitted model for inferential
purposes, one must evaluate fit and model assumptions. I calculate the goodness-of-fit tests
and obtained a value of p = 0.0004 with the Tyg test, p = 0.54 with the Lipsitz test, and
p = 0.0051 and p = 0.0056 with the PR tests. The T3¢ test indicated lack of fit due to sev-
eral large differences between observed and estimated frequencies (Table 5.4), a result that
was supported by the two PR tests. After fitting an unconstrained continuation-ratio model
(Hosmer and Lemeshow, 2000), which did not assume independence of covariate effects and
response categories, I observed variation across logits for several of the coefficients (data not
shown). The assumption of proportional odds thereby did not seem to be satisfied for the
fitted model in Table 5.3. At this point, one might continue using the unconstrained model.
The goodness-of-fit tests discussed here have not, as yet, been extended to this model.

I noted one issue concerning the size of the estimated frequencies. Lipsitz et al. (1996)
suggested that all Ej;s should be greater than 1 and at least 80% should be greater than
5 for the 2-approximation to hold. In the Lipsitz test, the number of groups was chosen
such that 6 < g < n/5¢, making the average Ej; greater than 5, thus slightly reducing the
problem. In the tests by Pulkstenis and Robinson (2004), the number of groups was based on
the number of categorical covariate patterns. When there were many categorical covariates,
the number of groups could be great and the estimated frequencies small. Pulkstenis and
Robinson (2004) suggested that rows in the contingency table may be combined to increase
the Ejyjs. A disadvantage of that approach was the lack of a clear rule for which rows
to combine and how to carry out the approach. In Table 5.2, only 60% of the Ej;s was
greater than 5, and in Table 5.4, two Ej;s was less than 1 and 75% are greater than 5.
Thus, even for a fairly large sample size (n=>508), the rule about the estimated frequencies
is not easily satisfied. I thought the rule was too strict, at least for the T test. The results
from the simulation study suggested that the null distribution of the T} test statistic was
approximated well by the chi-square distribution even for the two smallest sample sizes (100
and 150). As a check, I calculated the Ty and Ty tests for the two models in Tables 5.1 and
5.3 and obtained similar results.

6. Discussion and recommendations

In this paper, I adapted the Hosmer-Lemeshow test to the proportional odds regression
model and obtained a goodness-of-fit test that was able to detect several types of lack of
fit: omission of interaction terms and wrong functional form of a continuous covariate. The
Hosmer-Lemeshow test, the multinomial goodness-of-fit test in Fagerland et al. (2008), and
the new test in this paper formed a unified approach to testing goodness-of-fit for binary,
multinomial, and ordinal logistic regression models.

I compared the power of the new test (7,) with that of Pulkstenis and Robinson (2004)
tests. Overall, the T}, test was able to detect lack of fit for five of the two situations considered
in this study. Furthermore, the power of the T}, test was superior to Pulkstenis and Robinson
tests. Considering the nature of goodness-of-fit tests, this is of little concern. Goodness-of
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-fit tests are not meant to provide proof that a model is well fitted to the data. Rather, a
goodness-of-fit test is a tool to detect lack of fit. A significant result from a goodness-of-fit
test should lead to further investigations into the nature of the lack of fit. Similarly, a non-
significant result is not by itself sufficient to claim goodness-of-fit and should be interpreted
in light of the scope of that particular test. A slight increase in the number of models in which
lack of fit is indicated should merely lead to a more detailed examination of the models. A
goodness-of-fit test can never provide a complete assessment of model fit.

It is thus important that goodness-of-fit is assessed broadly so that many types of lack
of fit might be detected and that the assessment does not stop with a goodness-of-fit test
that has p > 0.05. One useful feature of the test by Pulkstenis and Robinson (2004) is the
ability to see, by way of the contingency table of observed and estimated frequencies, which
covariate patterns contribute to the lack of fit. As illustrated in the Example section of
Pulkstenis and Robinson (2004), such knowledge may suggest inclusion of interaction terms
in the regression model that may improve the fit.

If the regression model contains no continuous and only a few categorical covariates, neither
the T, nor the test by Pulkstenis and Robinson (2004) can be calculated. Goodness-of-fit
can then be assessed by the standard Pearson chi-square statistic.

The simulation study in this paper is limited in several ways. First, the relationships
between the response variable and the covariates have been modeled using only a few com-
binations of coefficients. It is uncertain whether these models are representative of the rela-
tionships encountered in practice. Similarly, the distribution and number of covariates vary
more in real life than what is possible to model in a simulation study. A simulation study
thereby is reduced to illustrating the performance of methods in particular situations. Our
confidence in the results that depends on the consistency shown by the methods across the
simulated settings.

The proportional odds model is but one of several ordinal logistic regression models.
The T, test proposed here can be extended to other ordinal models, such as the adjacent-
category or the continuation-ratio model. The derivation of the test statistic in (3.7) is only
dependent on a categorical response variable and a model that can estimate probabilities for
each response category for each observation. However, the distribution of the test statistic
may vary from model to model because the models impose different structures on the data.
The test has a statistic that is equal to (3.7), but the x? degrees of freedom are (g—2)(c—1),
whereas the proportional odds test has (g —2)(¢—1) 4 (¢ — 2) degrees of freedom. Moreover,
it may be necessary to use a different grouping strategy for other models. I therefore leave
the development of similar goodness-of-fit tests for other ordinal logistic regression models
to future research projects.
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