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Abstract
Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in

survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly
consider test statistics based on the empirical distribution function (EDF) to test normal distributions with un-
known location and scale parameters when data are randomly censored. The most famous EDF test statistic is
the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the Cramér-von Mises and the Anderson-
Darling statistic are well known. The Cramér-von Mises statistic is generalized to randomly censored cases by
Koziol and Green (Biometrika, 63, 465–474, 1976). In this paper, we generalize the Anderson-Darling statistic
to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation
study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation
study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered
among the three EDF statistics we take into account.

Keywords: Anderson-Darling statistic, Cramér-von Mises statistic, goodness-of-fit tests, Kaplan-
Meier estimator, Kolmogorov-Smirnov statistic, normal distribution, random censoring

1. Introduction

Goodness-of-fit techniques are an important problem in statistical analysis. In survival and reliability
experiments, censored data occur frequently. As much as nonparametric methods are widely used,
the parametric approach also plays an important role in survival analysis. Hence we need to take into
account a testing problem for censored data as well as complete data. Usually the goodness-of-fit tests
for complete data are adapted to censored cases according to censoring types. Regarding censoring
types, the most common and simplest censoring schemes are type I or type II censoring. In this paper,
we deal with random censoring. It is more general censoring type and occurs frequently in medical
studies. For several censoring types and general theory of survival analysis, we refer Lee and Wang
(2003), and Tableman and Kim (2004).

As for random censoring, Koziol and Green (1976), Koziol (1980), and Nair (1981) modified test
statistics based on the empirical distribution function (EDF) or weighted empirical process. In Koziol
and Green (1976), the Cramér-von Mises statistic is generalized to randomly censored data using the
Kaplan-Meier product limit estimator of the distribution function. Chen (1984) studied a correlation
statistic for randomly censored data.

In this paper, we study test statistics for normal distributions with unknown location and scale
parameters when data are randomly censored. When lifetimes are assumed to follow a lognormal
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distribution, the logarithm of the lifetimes should follow a normal distribution, and the inference for
normal is needed. The lognormal distribution is useful when a hazard rate is increasing at first and
then decreasing. We consider the test statistics for normality based on EDF such as the Kolmogorov-
Smirnov statistic, the Koziol-Green statistic, and the Anderson-Darling statistic. A more general study
about the EDF statistics is given in Stephens (1986), and several topics for testing normality are also
studied in Thode (2002).

The Cramer-von Mises statistic and the Anderson-Darling statistic are the quadratic statistics
based on EDF. The main difference between two statistics is the weight function in the quadratic
form. As it is mentioned, the Koziol-Green statistic is a generalized version of the Cramer-von Mises
statistic for randomly censored data. This paper is to generalize the Anderson-Darling statistic to ran-
domly censored data. The Kaplan-Meier estimator is used as in Koziol and Green (1976). The newly
defined statistic is applied to test normality with unknown parameters. Kim (2012, 2017) studied the
EDF statistic for randomly censored exponential and Weibull distribution, respectively, when some
parameters are unknown.

In Section 2, we provide test statistics based on EDF. In Section 3, simulation study and power
comparisons are presented. An example is also provided. In Section 4, we mention some concluding
remarks.

2. Goodness-of-fit test statistics

First, we summarize the goodness-of-fit test statistics based on EDF when data are a complete ran-
dom sample. Let X1, . . . , Xn be a random sample of size n with a continuous cumulative distribution
function F. We consider the simple hypothesis

H0 : F = F0 (2.1)

with a completely specified distribution function F0. The EDF Fn(x) is defined by

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x).

The EDF statistics for goodness-of-fit tests measure the difference between Fn(x) and F0(x). The most
well known EDF statistic is the Kolmogorov-Smirnov statistic

Dn = sup
x∈R
|Fn(x) − F0(x)| . (2.2)

A second well known and wide class of statistics are the quadratic statistics. The Cramér-von Mises
statistic

W2
n = n

∫ ∞

−∞
(Fn(x) − F0(x))2 dF0(x) (2.3)

and the Anderson-Darling statistic

A2
n = n

∫ ∞

−∞

(Fn(x) − F0(x))2

F0(x)(1 − F0(x))
dF0(x) (2.4)

are the most popular quadratic statistics.
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We use the probability integral transformation, F0(Xi), to compute the above statistics. Under the
null hypothesis in (2.1), F0(Xi) follows the uniform distribution between 0 and 1, U(0, 1), and we can
assume F0 is the uniform distribution without loss of generality. Consequently comparing the EDF
of the F0(Xi) with the uniform distribution will take the same values when we calculate the statistics
from the EDF of the Xi, Fn(x), compared with F0. It also follows that the distributions of the above
statistics do not depend on F0 and depend only on the sample size n.

Now let us consider censored data cases. Let Y0
1 , . . . ,Y

0
n be lifetimes with a continuous distribution

function FY , and C1, . . . ,Cn be random censoring times drawn independently of the Y0
1 , . . . ,Y

0
n from

a distribution function FC . We assume the Y0
i is censored on the right by Ci. Hence we observe n iid

random pairs (Yi, δi), i = 1, . . . , n with

Yi = min
(
Y0

i ,Ci

)
and δi =

{
1, if Y0

i ≤ Ci,

0, if Y0
i > Ci.

We write (Y(i), δ(i)) when the data Y1, . . . ,Yn are ordered, where Y(1) ≤ · · · ≤ Y(n) are the ordered
observations, and δ(i) is the indicator corresponding to Y(i). We want to test the null hypothesis

H0 : FY = F0
Y . (2.5)

Since the censored data do not have the full knowledge of the EDF, we use the product limit
estimator F̂n

1 − F̂n(t) =


1, t < Y(1),∏

Y( j)≤t

(
n− j

n− j+1

)δ( j)
, t ≤ Y(n),

0, t > Y(n)

to estimate FY . The estimator is studied in Kaplan and Meier (1958), Efron (1967), Meier (1975), and
Breslow and Crowley (1974), and we usually call it Kaplan-Meier estimator. It is usually written as

1 − p̂i =
∏
j≤i

(
n − j

n − j + 1

)δ( j)

, i = 1, . . . , n, (2.6)

for simplicity. By Michael and Schucany (1986), the p̂i could be modified by

p̂i,c = 1 − n − c + 1
n − 2c + 1

∏
j≤i

(
n − j − c + 1
n − j − c + 2

)δ( j)

, 0 ≤ c ≤ 1, i = 1, . . . , n,

and it reduces to (i− c)/(n− 2c+ 1) for a complete sample. The popular value of c is c = 0 or c = 0.5.
As in the complete sample, we still need to use the probability integral transformation to compute

the statistics. Hence we define the product limit estimator Ĝn for

Z(i) = F0
Y (Y(i)) (2.7)

as

Ĝn(z) =


0, z < Z(1),

1 −∏
Z( j)≤z

(
n− j

n− j+1

)δ( j)
, z ≤ Z(n),

1, z > Z(n).

(2.8)
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Using (2.8) and (2.6), the Kolmogorov-Smirnov statistic based on the EDF in (2.2) could be general-
ized to randomly censored data by

DCn = sup
0<z<1

∣∣∣Ĝn(z) − z
∣∣∣ = max

(
DC+n ,DC−n

)
, (2.9)

where Z(n+1) = 1, p̂0 = 0, p̂n+1 = 1, and

DC+n = max
1≤ j≤n+1, δ( j)=1

{
p̂ j − Z( j)

}
, DC−n = max

1≤ j≤n+1, δ( j)=1

{
Ẑ( j) − p̂ j−1

}
with p̂i in (2.6). Koziol (1980) proposed a similar statistic to DCn based on the weighted empirical
process.

Koziol and Green (1976) generalized the Cramér-von Mises statistic in (2.3) to

ψ2
n = n

∫ 1

0

(
Ĝn(z) − z

)2
dz (2.10)

for randomly censored data. It measures the discrepancy between Ĝn in (2.8) and U(0, 1). By Koziol
and Green (1976), the statistic in (2.10) can be computed as

ψ2
n = n

n∑
j=1

(
Ĝn

(
Z( j)

))2 (
Z( j+1) − Z( j)

)
− n

n∑
j=1

Ĝn

(
Z( j)

) (
Z2

( j+1) − Z2
( j)

)
+

1
3

n

= n
n∑

j=1

Ĝn

(
Z( j)

) (
Z( j+1) − Z( j)

) {
Ĝn

(
Z( j)

)
−

(
Z( j+1) + Z( j)

)}
+

1
3

n (2.11)

with Z(0) = 1, Z(n+1) = 1.
In this paper, let us think about a generalization of the Anderson-Darling statistic to randomly

censored data. In this case, the statistic in (2.4) becomes

AC2
n = n

∫ 1

0

(
Ĝn(z) − z

)2

z(1 − z)
dz,

for Ĝn in (2.8). Since ∫ 1

0

1
z(1 − z)

dz,
∫ 1

0

1
1 − z

dz,
∫ 1

0

z
1 − z

dz

are not integrable on [0, 1], we define AC2
n as the limit

AC2
n = lim

ϵ,δ→0
n
∫ 1−δ

ϵ

(
Ĝn(z) − z

)2

z(1 − z)
dz,

for fixed 0 < ϵ < Z(1), 0 < δ < 1− Z(n) as in a complete sample. For computing formula in a complete
sample, see Stephens (1986) or Bagdonavičius et al. (2001). Now we think about the computational
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form of the statistic AC2
n.

AC2
n = lim

ϵ,δ→0
n


∫ Z(1)

ϵ

z
1 − z

dz +
n−1∑
j=1

∫ Z( j+1)

Z( j)

(
Ĝn(z) − z

)2

z(1 − z)
dz +

∫ 1−δ

Z(n)

1 − z
z

dz


= lim

ϵ,δ→0
n

∫ Z(1)

ϵ

z
1 − z

dz +
∫ 1−δ

Z(n)

1 − z
z

dz

+

n−1∑
j=1

(
Ĝn

(
Z( j)

))2 (
− ln

(
1 − Z( j+1)

)
+ ln Z( j+1) + ln

(
1 − Z( j)

)
− ln Z( j)

)
−2

n−1∑
j=1

Ĝn

(
Z( j)

) (
− ln

(
1 − Z( j+1)

)
+ ln

(
1 − Z( j)

))
+

∫ Z(n)

Z(1)

z
1 − z

dz

 .
Since ∫ Z(1)

ϵ

z
1 − z

dz = −Z(1) − ln(1 − Z(1)) + ϵ + ln(1 − ϵ),∫ 1−δ

Z(n)

1 − z
z

dz = ln(1 − δ) − (1 − δ) − ln Z(n) + Z(n),∫ Z(n)

Z(1)

z
1 − z

dz = −Z(n) − ln(1 − Z(n)) + Z(1) + ln(1 − Z(1)),

AC2
n becomes

AC2
n = n

n−1∑
j=1

(
Ĝn

(
Z( j)

))2 (
− ln

(
1 − Z( j+1)

)
+ ln Z( j+1) + ln

(
1 − Z( j)

)
− ln Z( j)

)
− 2n

n−1∑
j=1

Ĝn

(
Z( j)

) (
− ln

(
1 − Z( j+1)

)
+ ln

(
1 − Z( j)

))
− n ln

(
1 − Z(n)

) − n ln Z(n) − n. (2.12)

Let us consider the case F0
Y = Φ in (2.5), and it includes some unknown parameters. The null

hypothesis is

H0 : FY (y) = Φ
(y − µ
σ

)
, for some µ, σ > 0.

When we assume the distribution of Y0
i follows a normal, Y0

i itself cannot be a lifetime. It means Y0
i

is the logarithm of the lifetime. For the composite null hypothesis, we need to estimate the unknown
parameters µ and σ. We usually use the maximum likelihood estimators (MLEs) of µ and σ. Kim
(2018) studied the estimation of the parameters for normal distributions under random censoring. In
that paper, explicit forms of the approximate MLEs are provided by expanding nonlinear parts of the
likelihood equations in Taylor series around some suitable points, which are closely related to the
Kaplan-Meier estimators in (2.6). If we estimate µ and σ by µ̂ and σ̂, we can take Z(i) in (2.7) as Ẑ(i)
with the estimated parameters,

Ẑ(i) = Φ

(
Y(i) − µ̂
σ̂

)
, (2.13)
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Figure 1: Q-Q plots of the log(remission times) for a normal distribution. The left plot is for the treatment group,
and the right plot is for the placebo.

and consider D̂Cn, ψ̂2
n, ÂC

2
n, which have exactly the same form with the statistics DCn, ψ2

n, AC2
n in

(2.9), (2.11), and (2.12) replacing Z(i) with Ẑ(i) in (2.13).

3. Simulation and examples

3.1. Examples

We consider the following set of remission times for two groups of acute leukemia patients. In this
clinical trial, one group of 21 patients received a treatment called 6-mercaptopurine (6-MP), and the
other group of 21 patients received a placebo. Each patient was randomized to receive a treatment or
a placebo; the study ended after one year. The data set originally comes from Freireich et al. (1963)
in a clinical trail. It is also discussed in Lee and Wang (2003) and Kleinbaum and Klein (2005). Here
are the remission times, in weeks.

Treatment 6, 6, 6, 7, 10, 13, 16, 22, 23,
6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+

Placebo 1, 1, 2, 2, 3, 4, 4, 5, 5,
8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

By looking at Figure 1, the straight lines fit quite closely to both groups. It indicates a normal
distribution appears to give fairly good fit; however, the way of judging may be subjective. First, let
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Table 1: Upper tail percentage points of the test statistic
√

nD̂Cn with r the ratio of censored data

n r α
0.01 0.025 0.05 0.10 0.15 0.25 0.5

20

0.6 3.23 2.90 2.62 2.25 2.02 1.70 1.27
0.5 2.54 2.24 1.95 1.67 1.50 1.28 0.98
0.4 1.88 1.63 1.43 1.24 1.13 1.00 0.81
0.2 1.13 1.04 0.96 0.88 0.83 0.76 0.64

30

0.6 3.44 3.06 2.73 2.37 2.13 1.79 1.35
0.5 2.54 2.24 1.97 1.68 1.52 1.31 1.02
0.4 1.83 1.62 1.43 1.24 1.15 1.02 0.83
0.2 1.13 1.03 0.96 0.88 0.83 0.76 0.65

40

0.6 3.52 3.13 2.82 2.44 2.19 1.88 1.41
0.5 2.59 2.24 1.97 1.71 1.54 1.34 1.05
0.4 1.82 1.60 1.42 1.25 1.14 1.02 0.84
0.2 1.11 1.03 0.95 0.88 0.82 0.75 0.65

50

0.6 3.58 3.24 2.89 2.51 2.27 1.95 1.47
0.5 2.56 2.22 1.97 1.70 1.56 1.35 1.07
0.4 1.84 1.60 1.42 1.24 1.14 1.02 0.84
0.2 1.11 1.03 0.95 0.87 0..83 0.76 0.65

100

0.6 3.86 3.46 3.09 2.71 2.45 2.13 1.63
0.5 2.59 2.28 2.01 1.78 1.62 1.42 1.13
0.4 1.75 1.51 1.37 1.22 1.14 1.03 0.86
0.2 1.11 1.02 0.96 0.88 0.83 0.77 0.66

us examine the treatment group. To test that a lognormal distribution fits the data, we need to estimate
unknown parameters. The MLEs of the parameters are

µ̂ = 3.2030, σ̂ = 0.9787. (3.1)

They are computed by the S-plus function survReg. When we compute the statistics
√

nD̂Cn, ψ̂2
n, and

ÂC
2
n in this paper, we have

√
nD̂Cn = 2.0410 (p-value ≈ 0.15),

ψ̂2
n = 0.6303 (p-value ≈ 0.15),

ÂC
2
n = 2.0394 (p-value ≈ 0.25).

The p-values are found approximately by looking at Tables 1–3 when n = 20, r = 0.6. By the results,
we conclude that the lognormal distribution could fit the data. Using the parameter estimation in (3.1),
the probability that the remission time T is longer than 10 weeks can be estimated as

P(T > 10) = P(log T > 2.3) = 1 − Φ
(

2.3 − µ̂
σ̂

)
= 0.8219.

The value is almost the same when we use the Weibull distribution (Lee and Wang, 2003, Chapter 3).

As for the placebo group, the data are complete. Hence we can compute either D̂Cn, ψ̂2
n, ÂC

2
n or

Dn, W2
n , A2

n in (2.2), (2.3), (2.4) by using the computational forms and Φ
(
(log t(i) − µ̂)/σ̂

)
, where t(i)’s

are the order statistics of the remission time. The computational forms for a complete sample can be
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Table 2: Upper tail percentage points of the test statistic ψ̂2
n with r the ratio of censored data

n r α
0.01 0.025 0.05 0.10 0.15 0.25 0.5

20

0.6 2.52 1.85 1.37 0.90 0.68 0.46 0.25
0.5 1.25 0.88 0.61 0.42 0.34 0.25 0.15
0.4 0.56 0.39 0.31 0.23 0.19 0.15 0.10
0.2 0.22 0.18 0.15 0.13 0.11 0.09 0.06
0.0 0.17 0.14 0.12 0.10 0.09 0.07 0.05

30

0.6 2.51 1.78 1.31 0.88 0.68 0.46 0.25
0.5 1.05 0.75 0.55 0.39 0.31 0.24 0.15
0.4 0.45 0.35 0.28 0.22 0.19 0.15 0.10
0.2 0.22 0.18 0.15 0.12 0.11 0.09 0.06

40

0.6 2.32 1.68 1.24 0.85 0.66 0.47 0.26
0.5 0.99 0.67 0.51 0.37 0.31 0.23 0.15
0.4 0.43 0.33 0.27 0.21 0.18 0.14 0.10
0.2 0.21 0.17 0.15 0.12 0.11 0.09 0.06

50

0.6 2.19 1.66 1.22 0.84 0.67 0.48 0.27
0.5 0.88 0.62 0.47 0.35 0.29 0.23 0.15
0.4 0.41 0.31 0.26 0.20 0.17 0.14 0.10
0.2 0.21 0.17 0.15 0.12 0.11 0.09 0.06

100

0.6 2.00 1.48 1.09 0.79 0.64 0.48 0.29
0.5 0.70 0.53 0.41 0.33 0.28 0.22 0.15
0.4 0.33 0.27 0.23 0.18 0.16 0.13 0.09
0.2 0.20 0.17 0.15 0.12 0.10 0.09 0.06
0.0 0.17 0.15 0.13 0.10 0.09 0.07 0.05

found in Stephens (1986), for example. The value of each statistic is as follows.

Kolmogorov-Smirnov = 0.1797 (p-value ≈ 0.0751),
Cramer-von Mises = 0.0617 (0.25 < p-value < 0.5),
Anderson-Darling = 0.5064 (p-value ≈ 0.15).

The p-value of the Kolmogorov-Smirnov statistic is computed by the S-plus function ks.gof. As
for the other statistics, Table 2, Table 3 are used for n = 20, r = 0. The Kolmogorov-Smirnov
statistic gives a small p-value; however, the p-values of the other statistics support that the data fit the
lognormal distribution.

3.2. Simulation results

A simulation study is conducted to give the null distributions of the test statistics D̂Cn, ψ̂2
n, and ÂC

2
n

described in Section 2. Here we estimate the unknown parameters µ and σ by the MLEs. The
S-plus function survReg is used to compute them. The power of the statistics is also compared
through a simulation. The upper percentage points of the test statistics are given in Table 1 to Table
3 for sample sizes n = 20, 30, 40, 50, 100, censored ratio r = 0.2, 0.4, 0.5, 0.6, and the significance
level α = 0.01, 0.025, 0.05, 0.10, 0.15, 0.25, 0.50. N = 10,000 runs have been done to have null
distributions.

We use the random censorship model proposed in Koziol and Green (1976) to control the censored
ratio. It is

1 − FC = (1 − FY )β, for some β > 0,

where FC is the distribution function of the censoring time Ci, and β is called a censoring parameter.
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Table 3: Upper tail percentage points of the test statistic ÂC
2
n with r the ratio of censored data

n r α
0.01 0.025 0.05 0.10 0.15 0.25 0.5

20

0.6 7.05 5.09 3.96 3.11 2.65 2.07 1.32
0.5 3.79 2.97 2.42 1.94 1.67 1.33 0.90
0.4 2.47 1.94 1.63 1.34 1.16 0.95 0.67
0.2 1.40 1.14 0.97 0.82 0.73 0.61 0.44
0.0 0.99 0.83 0.71 0.60 0.53 0.45 0.32

30

0.6 6.75 5.42 4.34 3.33 2.84 2.27 1.48
0.5 3.90 3.15 2.55 2.01 1.75 1.41 0.95
0.4 2.54 2.04 1.68 1.37 1.20 0.99 0.71
0.2 1.41 1.16 0.99 0.81 0.72 0.61 0.44

40

0.6 6.82 5.43 4.30 3.48 3.01 2.40 1.60
0.5 4.03 3.09 2.61 2.11 1.83 1.50 1.02
0.4 2.68 2.10 1.73 1.41 1.23 1.00 0.71
0.2 1.36 1.13 0.97 0.81 0.71 0.60 0.43

50

0.6 7.01 5.46 4.48 3.66 3.19 2.58 1.71
0.5 3.87 3.18 2.66 2.12 1.85 1.50 1.04
0.4 2.68 2.09 1.75 1.40 1.23 1.02 0.73
0.2 1.38 1.15 0.97 0.81 0.72 0.61 0.44

100

0.6 7.78 6.22 5.20 4.32 3.76 3.05 2.09
0.5 4.64 3.61 2.95 2.36 2.07 1.70 1.18
0.4 2.89 2.18 1.76 1.46 1.27 1.05 0.76
0.2 1.34 1.12 0.97 0.82 0.72 0.61 0.45
0.0 1.00 0.86 0.74 0.62 0.55 0.46 0.33

We have

P
(
Y0

i > Ci

)
=

∫ ∞

−∞
(1 − FY (y))dFC(y) =

∫ 1

0
β(1 − x)βdx =

β

β + 1

under this model. It is the expected proportion of the censored observations. In Table 1 to Table 3, r is
the expected ratio of the censored data, and it is equal to β/(β+ 1). Csörgő and Horváth (1981), Chen
et al. (1982), and Kim (2011, 2012) mentioned the motivation or characterization of this model.

As we explained in Section 1, the EDF statistics we introduced are distribution free under the
simple null hypothesis, since we can use the probability integral transformation. However they depend
on the distribution tested when unknown parameters are estimated (Stephens, 1986). If we investigate
the null distribution of

√
nD̂Cn and ψ̂2

n in Table 2 and Table 3, the values are very similar to the upper
tail percentage points for randomly censored Weibull distributions in Kim (2017), especially when the
censoring ratio r is small. Apparently the null distributions of the statistics do not change significantly
by the tested distribution and the unknown parameter estimation.

In Table 2 and Table 3, r = 0 for n = 20, n = 100 means no censoring, i.e., complete data. The
numbers are from Stephens (1986, Table 4.10) for comparison. He presented the upper tail percentage
points for type II censoring and complete data.

Next, we examine the power of the test statistics. Table 4 and Table 5 provide the power of the
statistics at the significance level α = 0.10 for sample sizes n = 50, 100. N = 5,000 samples are
generated for each alternative. We take into account the following alternatives.

• exponential distribution with pdf f (t) = e−t, t > 0.

• gamma distribution, Gamma(α), α = 0.5, 2, with pdf f (t;α) = tα−1e−t/Γ(α), t > 0.
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Table 4: Power comparison of D̂Cn, ψ̂2
n, and ÂC

2
n for α = 0.10 and n = 50

Distribution Censoring ratio (r) D̂Cn ψ̂2
n ÂCn

log-normal

0.6 0.10 0.10 0.10
0.5 0.11 0.11 0.10
0.4 0.11 0.10 0.11
0.2 0.11 0.10 0.10

exponential

0.6 0.15 0.16 0.37
0.5 0.25 0.30 0.44
0.4 0.31 0.38 0.47
0.2 0.47 0.55 0.59

Gamma(0.5)

0.6 0.18 0.21 0.51
0.5 0.35 0.43 0.64
0.4 0.50 0.60 0.71
0.2 0.71 0.78 0.82

Gamma(2)

0.6 0.12 0.13 0.24
0.5 0.17 0.19 0.28
0.4 0.20 0.25 0.30
0.2 0.29 0.34 0.36

Weibull(0.5)

0.6 0.16 0.17 0.37
0.5 0.24 0.29 0.42
0.4 0.32 0.40 0.49
0.2 0.45 0.54 0.59

Weibull(2)

0.6 0.16 0.17 0.36
0.5 0.23 0.29 0.43
0.4 0.32 0.39 0.49
0.2 0.47 0.55 0.59

log-logistic

0.6 0.11 0.11 0.16
0.5 0.13 0.14 0.16
0.4 0.13 0.15 0.17
0.2 0.16 0.19 0.21

log-DE

0.6 0.14 0.16 0.32
0.5 0.19 0.28 0.34
0.4 0.23 0.37 0.37
0.2 0.44 0.52 0.51

half-logistic

0.6 0.17 0.20 0.47
0.5 0.30 0.38 0.55
0.4 0.44 0.54 0.64
0.2 0.59 0.69 0.72

• Weibull distribution, Weibull(α), α = 0.5, 2 with pdf f (t;α) = αtα−1e−tα , t > 0.

• log-logistic distribution with pdf f (t) = 1/(1 + t)2, t > 0.

• log double exponential, log-DE, DE with pdf f (t) = e−|t|/2.

• half-logistic distribution with f (t) = 2e−t/(1 + e−t)2, t > 0.

Note that the Y(i) in (2.13) are the logarithm of the lifetime. Therefore, we should take the log-
arithm of the simulated data for each alternative before we compute the test statistics D̂Cn, ψ̂2

n, and

ÂC
2
n. The distribution of the first row of Table 4 and Table 5 is written as the lognormal for com-

parison. We see the following from the power results. First of all, ÂC
2
n shows the best power, ψ̂2

n,
the second, and D̂Cn the lowest for each alternative considered except the log-DE. Even in that case,
ÂC

2
n has comparable power to ψ̂2

n, and D̂Cn still has the lowest. According to D’Agostino (1986),
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Table 5: Power comparison of D̂Cn, ψ̂2
n, and ÂC

2
n for α = 0.10 and n = 100

Distribution Censoring ratio (r) D̂Cn ψ̂2
n ÂC

2
n

log-normal

0.6 0.10 0.10 0.10
0.5 0.10 0.09 0.10
0.4 0.11 0.10 0.11
0.2 0.10 0.10 0.09

exponential

0.6 0.23 0.31 0.57
0.5 0.42 0.55 0.68
0.4 0.62 0.71 0.78
0.2 0.74 0.82 0.87

Gamma(0.5)

0.6 0.36 0.49 0.81
0.5 0.65 0.79 0.89
0.4 0.87 0.92 0.95
0.2 0.95 0.97 0.99

Gamma(2)

0.6 0.16 0.20 0.37
0.5 0.24 0.33 0.43
0.4 0.38 0.46 0.51
0.2 0.45 0.55 0.61

Weibull(0.5)

0.6 0.24 0.32 0.59
0.5 0.42 0.56 0.69
0.4 0.61 0.70 0.76
0.2 0.73 0.81 0.87

Weibull(2)

0.6 0.23 0.31 0.60
0.5 0.42 0.55 0.69
0.4 0.61 0.71 0.76
0.2 0.73 0.82 0.87

log-logistic

0.6 0.12 0.14 0.19
0.5 0.12 0.16 0.18
0.4 0.15 0.20 0.20
0.2 0.20 0.24 0.27

log-DE

0.6 0.18 0.31 0.45
0.5 0.25 0.50 0.48
0.4 0.41 0.65 0.58
0.2 0.69 0.77 0.76

half-logistic

0.6 0.31 0.43 0.73
0.5 0.56 0.72 0.84
0.4 0.78 0.86 0.90
0.2 0.86 0.92 0.95

the Anderson-Darling statistic is still the most powerful EDF test for normal when data are complete.
Second, the difference in power between ÂC

2
n and ψ̂2

n becomes large for the big values of r. Third,
every statistic has relatively low power for the log-logistic alternative. In this alternative, the statistics
have just a negligible increase of the power even if the sample size becomes bigger or the censoring
ratio is smaller.

4. Concluding remarks

In this paper, we have studied goodness-of-fit test statistics for normal distributions with an unknown
location and scale parameter when data are randomly censored. In this case the distributional assump-
tion for lifetime itself is lognormal distributions. We take into account test statistics based on EDF
statistics such as the Kolmogorov-Smirnov statistic, the Koziol-Green statistic, and the Anderson-
Darling statistic. We have generalized the Anderson-Darling statistic to randomly censored data, and
found a computational form. We have used the Kaplan-Meier product limit as it was done in Koziol
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and Green (1976).
Based on the simulation studies, the generalized Anderson-Darling statistic has shown the best

power among EDF statistics that we have considered under almost all alternatives. The power results
are consistent with complete sample cases in normal distributions as it is mentioned in D’Agostino
(1986).
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