• Title/Summary/Keyword: Test Setup Design

Search Result 76, Processing Time 0.033 seconds

Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge (강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안)

  • Lee, Kyoung-Chan;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.15-21
    • /
    • 2009
  • The design of the stud shear connector of a bridge structure is mostly controlled by the fatigue resistance not by the strength, if it is followed by AASHTO LRFD Bridge Design Specification. This fatigue design code in AASHTO LRFD is based on the research work done by Slutter and Fisher in 1966. These tests seemingly underestimated the fatigue resistance of connectors because of the inherent eccentricity of the one-face test setup which results additional tension forces to the stud. In addition, the stress ranges were not plotted in the log scale, because it was not known at that time that the fatigue resistance of the welded steel structures has a linear relationship of log scales of stress range and number of loading cycles. This study evaluates the test data produced by the Slutter and Fischer, and plot the data on the proper manner. The fatigue push-out test data produced recently by many other researches all around the world are gathered and analyzed, furthermore a design curve is recommended.

Analysis of Optimal Dynamic Absorbing System Considering Human Behavior Induced by Transmitted Force (폭발 충격 발생기구의 인체전달 충격력 및 완충시스템 해석)

  • 김효준;양현석;박영필;류봉조;최의중;이성배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.64-69
    • /
    • 2002
  • In this study, the optimal dynamic isolation system for gas operated combat weapon has been investigated. For this purpose, firstly, the dynamic behavior of human induced by firing operations has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic isolation system, parameter optimization process has been performed based on the simplified isolation system under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation.

A Study on the Consumer Service of Retailing - focusing on the Apparel Product - (유통업체의 고객서비스에 관한 연구 -의류제품을 중심을-)

  • 이은숙
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.4 no.2
    • /
    • pp.31-45
    • /
    • 2002
  • The purpose of this study was designed to investigate if self-monitoring variable among various individual trait theories and demographic variable would be variables which can explain about the importance differences of consumer service level of retailing in the garment product. The survey was conducted from Feb, 6 to 16, 2002. For this survey, the 118 data were analysed with spss window 9.0 version and Cronbach's, Factor analysis, one-way ANOVA, Duncan test, Frequency, mean, percentage were applied. The results of this study were as follows; 1. Consumer service was classified in attitude/confidence/expert knowledge of salesperson, product display, product information, product assortment, shopping environment, lighting setup. 2. As a result of analyzing the importance differences per consumer service dimension depending on self-monitoring levels, it was not significant differences. 3. As a result of analyzing the importance differences per consumer service dimension depending on demographic variables, it was not significant differences.

  • PDF

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.

Interior noise characteristic and contribution analysis for rolling stocks (전동차 실내소음특성 및 기여도 분석)

  • 정승원;이용관;박석태;김경환
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.200-207
    • /
    • 1999
  • The purpose of this research is to setup the design procedure of low noise rolling stocks. Noise sources are identified at a field test, and the contribution of noise sources to each part of car interior is ensured by sound intensity measurement technique. Added material to each section of the carbody makes it possible to identify absorption or reflection performance of each part to the anterior random noise. Such experimental tests to the exterior noise intruding through the floor represent that the best countermeasure on the floor is to implement reflecting material which can properly interfere noise. Design procedure of low noise rolling stocks is set through several experiments.

  • PDF

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

A Qualitative Study on Personality of Intelligent Artificial Object for Engineering Education - Focusing on Appearance, Sound, Behavior of Robot Cleaners (공학 교육을 위한 지능화된 인공물의 성격에 대한 정성적 연구 방법 : 로봇청소기의 외형, 소리, 행동을 중심으로)

  • Lee, Jungjin;Ahn, JungHyun;Lim, Dokshin
    • Journal of Engineering Education Research
    • /
    • v.22 no.5
    • /
    • pp.56-62
    • /
    • 2019
  • This paper suggests the necessity of design education to engineering majors through qualitative research on the characteristics of intelligent artifacts. Robot cleaner is one of intelligent artificial objects that can approach people's life without awkwardness. How do people think of robot cleaners and define their personality, these days? In this experiment, subjects use and observe four different robot cleaners that have different appearances, behaviors and sounds in an experimental setup where is similar to actual use environment. We measure subjects' preferences and assessments for four different robot cleaners' personality. The test subjects were 11 designers who frequently collaborated with engineers and were able to express and express opinions about products. Experimental results showed that robot cleaners with the highest scores in appearance, behavior, and sound had the highest preference. In contrast, robot cleaners with low scores in three factors showed different results in the preference ranking.

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

Resistance to sliding in orthodontics: misconception or method error? A systematic review and a proposal of a test protocol

  • Savoldi, Fabio;Papoutsi, Aggeliki;Dianiskova, Simona;Dalessandri, Domenico;Bonetti, Stefano;Tsoi, James K.H.;Matinlinna, Jukka P.;Paganelli, Corrado
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.268-280
    • /
    • 2018
  • Resistance to sliding (RS) between the bracket, wire, and ligature has been largely debated in orthodontics. Despite the extensive number of published studies, the lack of discussion of the methods used has led to little understanding of this phenomenon. The aim of this study was to discuss variables affecting RS in orthodontics and to suggest an operative protocol. The search included $PubMed^{(c)}$, $Medline^{(c)}$, and the Cochrane $Library^{(c)}$. References of full-text articles were manually analyzed. English-language articles published between January 2007 and January 2017 that performed an in vitro analysis of RS between the bracket, wire, and ligature were included. Study methods were analyzed based on the study design, description of materials, and experimental setup, and a protocol to standardize the testing methods was proposed. From 404 articles identified from the database search and 242 records selected from published references, 101 were eligible for the qualitative analysis, and six for the quantitative synthesis. One or more experimental parameters were incompatible and a meta-analysis was not performed. Major factors regarding the study design, materials, and experimental setup were not clearly described by most studies. The normal force, that is the force perpendicular to the sliding of the wire and one of the most relevant variable in RS, was not considered by most studies. Different variables were introduced, often acting as confounding factors. A protocol was suggested to standardize testing procedures and enhance the understanding of in vitro findings.