• 제목/요약/키워드: Terzaghi soil

검색결과 57건 처리시간 0.028초

압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교 (Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test)

  • 권병해;임성훈
    • 한국농공학회논문집
    • /
    • 제66권2호
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.

초연약지반의 매립 및 지반개량 사례 연구 (II) - 지반개량 (Reclamation and Soil Improvement on Ultra Soft Soil (II) - Soil Improvement)

  • 나영묵;김희홍;권덕우
    • 한국지반환경공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.33-44
    • /
    • 2005
  • 본 연구에서 실트폰드는 크기가 55만평의 인공연못 안에 두께가 3~20m의 초연약점토가 침전되어 있었다. 수중모래포설공법을 이용하여 +4.0m 까지 매립을 완료한 1996년에 PBD재를 타설하연서 지반개량을 시작하였다. 지반개량전 대형토조시험과 시험시공을 포함하는 대규모 사전실험을 통하여 초연약지반의 침하특성을 분석하였다. 재하초기에 대변형이 발생하는 초연약지반은 Terzaghi의 1차원 압밀과 달리 탄소성 거동을 보였다. 이러한 사전실험에 얻은 결과를 토대로 초연약지반의 지반개량을 성공적으로 수행하였다. 본 연구에서는 초연약지반에서의 지반개량의 성공사례를 제시한다.

  • PDF

원형기초의 설계하중 예측을 위한 유안요소해석 (Finite Element Analysis to Predict Design Loads of Circular Foundation)

  • 김성득;김미룡
    • 한국지반공학회지:지반
    • /
    • 제5권1호
    • /
    • pp.19-26
    • /
    • 1989
  • 탄소성체지반위에 놓인 원형기초가 축대칭하중을 받았을 경우에 유한요소법에 의한 비선형해석을 수행한 결과로부터, 지반의 소성영역이 원판의 모서리부근에서 일어나기 시작하여 중심축 둘레로 연결되었을 때 접지압이 급격히 변하며 전단파괴가 시작된다고 판단되고 이 때의 외부작용하중을 설계하중으로 정 의하였다. 지반의 항복조건으로 Mohr-Coulomb의 파괴이론을 적용한 수치해석의 결과와 적절한 안전율에 근거한 실험결과가 근사함을 확인하였으나 Terzaghi공식에 의한 값보다는 작았다.

  • PDF

A numerical study on the seepage failure by heave in sheeted excavation pits

  • Koltuk, Serdar;Fernandez-Steeger, Tomas M.;Azzam, Rafig
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.513-530
    • /
    • 2015
  • Commonly, the base stability of sheeted excavation pits against seepage failure by heave is evaluated by using two-dimensional groundwater flow models and Terzaghi's failure criterion. The objective of the present study is to investigate the effect of three-dimensional groundwater flow on the heave for sheeted excavation pits with various dimensions. For this purpose, the steady-state groundwater flow analyses are performed by using the finite element program ABAQUS 6.12. It has been shown that, in homogeneous soils depending on the ratio of half of excavation width to embedment depth b/D, the ratio of safety factor obtained from 3D analyses to that obtained from 2D analyses $FS_{(3D)}/FS_{(2D)}$ can reach up to 1.56 and 1.34 for square and circular shaped excavations, respectively. As failure body, both an infinitesimal soil column adjacent to the wall (Baumgart & Davidenkoff's criterion) and a three-dimensional failure body with the width suggested by Terzaghi for two-dimensional cases are used. It has been shown that the ratio of $FS_{(Terzaghi)}/FS_{(Davidenkoff)}$ varies between 0.75 and 0.94 depending on the ratio of b/D. Additionally, the effects of model size, the shape of excavation pit and anisotropic permeability on the heave are studied. Finally, the problem is investigated for excavation pits in stratified soils, and important points are emphasized.

테르자기 압밀이론을 이용한 최종압밀침하량에 관한 신뢰성 해석 (Reliability Analysis of Final Settlement Using Terzaghi's Consolidation Theory)

  • 채종길;정민수
    • 대한토목학회논문집
    • /
    • 제28권6C호
    • /
    • pp.349-358
    • /
    • 2008
  • 본 연구에서는 고베 공항 해저 충적 점토를 대상으로 한 신뢰성 침하 해석을 위해 각종 입력 물성치의 불확실성을 확률 통계 이론에 근거하여 조사하였고, Terzaghi 압밀 방정식을 목적 함수로 AFOSM 법을 적용하여 파괴 확률을 정식화하였다. 신뢰성 해석 결과, 목표침하량을 평균침하량 ${\pm}10%,\;{\pm}25%$로 설정한 경우, 발생확률은 각각 30~50%, 60%~90%로 나타났다. 이는 대상 지반의 확률변수의 변동계수가 과거의 연구보고 범위 내에 있음을 고려할 때, 목적함수로 Terzaghi 압밀방정식을 이용한 경우 침하량의 허용 오차 범위는 평균침하량 ${\pm}10%$가 적절할 것으로 사료된다. 또한, 감도 분석 결과 해석에 크게 영향을 미치는 인자는 압축 계수, 모델, 압밀 항복 응력의 불명확성으로 나타났다. 이는 정밀도가 높은 사전 침하량의 예측을 위해서는 현장의 응력 변형 조건을 충실하게 반영한 시험을 수행하여 신뢰도가 높은 물성치를 구하는 것이 매우 중요한 것임을 설명한다.

실험적 연구를 통한 모래입자 형상이 토질정수에 미치는 영향 (Experimental Study on Effects of Sand Particles Shape on Geotechnical Properties)

  • 신은철;김종인;이한진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.896-905
    • /
    • 2006
  • Several soil parameters such as particle characteristics, geological element, drainage and loading conditions are influenced on the shear strength of soil. The characteristics of soil particles are important factor to the shear strength of soil. However, this component is not well considered in the determination of soil strength in Korea. The particle shape of sand was analyzed by utilizing SEM(Scanning Electron Micrograph) and compared its results in terms of aspect ratio, angularity and roughness. Based on the determined soil parameters, the ultimate bearing capacity of sandy ground was estimated by using Terzaghi bearing capacity equation.

  • PDF

유한요소법에 의한 얕은 기초의 지지력 및 침하 특성 연구 (A Study of Bearing Capacity and Settlement of Shallow Foundation by FEM)

  • 박종수;박춘식;장정욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1312-1319
    • /
    • 2006
  • This thesis studied the scale effects on bearing capacity and settlement characteristics by using FEM. The conclusions of the study are as follows. 1) For sandy soil, the bearing capacity ratio increased in the form of logarithm as the foundation width increased. Hence application of static mechanic theory results in overestimation of the bearing capacity when the bearing capacity should be derived from plate loading test results. 2) In clayey soil, the characteristics of the bearing capacity associated with foundation width met Terzaghi's bearing capacity theory. 3) In sandy soil, the settlement ratio increased non-linearly as foundation width increased. However, in clayey soil, the settlement ratio increased linearly. 4) In ordinary soil, the foundation width - settlement ratio turned out to be close to that of sandy soil.

  • PDF

Failure mechanisms in coupled poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Nikolic, Mijo
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.43-59
    • /
    • 2018
  • The presence of the pore fluid strongly influences the reponse of the soil subjected to external loading and in many cases increases the risk of final failure. In this paper, we propose the use of a discrete beam lattice model with the aim to investigate the coupling effects of the solid and fluid phase on the response and failure mechanisms in the saturated soil. The discrete cohesive link lattice model used in this paper, is based on inelastic Timoshenko beam finite elements with enhanced kinematics in axial and transverse direction. The coupling equations for the soil-pore fluid interaction are derived from Terzaghi's principle of effective stresses, Biot's porous media theory and Darcy's law for fluid flow through porous media. The application of the model in soil mechanics is illustrated through several numerical simulations.

강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석 (Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground)

  • 황희석;김동건;유남재
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF