• Title/Summary/Keyword: Terminal differentiation

Search Result 151, Processing Time 0.022 seconds

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

Cloning and Characterization of BTG-1 Gene from Pacific Oyster (Crassostrea gigas) (참굴(Crassostrea gigas)의 BTG1 유전자의 특성)

  • Chung, In Young;Oh, Jeong Hwan;Song, Young Hwan
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.398-407
    • /
    • 2017
  • BTG 1 (B-cell translocation gene 1) gene was first identified as a translocation gene in a case of B-cell chronic lympocytic leukemia. BTG1 is a member of the BTG/TOB family with sharing a conserved N-terminal region, which shows anti-proliferation properties and is able to stimulate cell differentiation. In this study, we identified and characterized the pacific oyster Crassostrea gigas BTG1 (cg-BTG1) gene from the gill cDNA library by an Expressed Sequence Tag (EST) analysis and its nucleotide sequence was determined. The cg-BTG1 gene encodes a predicted protein of 182 amino acids with 57% 56% identities to its zebrafish and human counterparts, and is an intron-less gene, which was confirmed by PCR analysis of genomic DNA. Maximal homologies were shown in conserved Box A and B. The deduced amino acid sequence shares high identity with other BTG1 genes of human, rat, mouse and zebrafish. The phylogenic analysis and sequence comparison of cg-BTG1 with other BTG1 were found to be closely related to the BTG1 gene structure. In addition, the predicted promoter region and the different transcription-factor binding site like an activator protein-1 (AP-1) response element involved in negative regulation and serum response element (SRE) were able to be identified by the genomic DNA walking experiment. The quantitative real-time PCR analysis showed that the mRNA of cg-BTG1 gene was expressed in gill, heart, digestive gland, intestine, stomach and mantle. The cg-BTG1 gene was expressed mainly in heart and mantle.

Crystal Structure of an Activity-enhancing Mutant of DUSP19 (효소활성 증가 돌연변이를 함유한 DUSP19의 결정구조)

  • Ju, Da Gyung;Jeon, Tae Jin;Ryu, Seong Eon
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1140-1146
    • /
    • 2018
  • Dual-specificity phosphatases (DUSPs) play a role in cell growth and differentiation by modulating mitogen-activated protein kinases. DUSPs are considered targets for drugs against cancers, diabetes, immune diseases, and neuronal diseases. Part of the DUSP family, DUSP19 modulates c-Jun N-terminal kinase activity and is involved in osteoarthritis pathogenesis. Here, we report screening of cavity-creating mutants and the crystal structure of a cavity-creating L75A mutant of DUSP19 which has significantly enhanced enzyme activity in comparison to the wild-type protein. The crystal structure reveals a well-formed cavity due to the absent Leu75 side chain and a rotation of the active site-bound sulfate ion. Despite the cavity creation, residues surrounding the cavity did not rearrange significantly. Instead, a tightened hydrophobic interaction by a remote tryptophan residue was observed, indicating that the protein folding of the L75A mutant is stabilized by global folding energy minimization, not by local rearrangements in the cavity region. Conformation of the rotated active site sulfate ion resembles that of the phosphor-tyrosine substrate, indicating that cavity creation induces an optimal active site conformation. The activity enhancement by an internal cavity and its structural information provide insight on allosteric modulation of DUSP19 activity and development of therapeutics.

Modulation of G-CSF Secretion by Mutations of Non Alpha-Helical Region in N-Terminus (G-CSF 단백질 N-말단의 비 알파-Helix 영역의 돌연변이에 의한 분비 조절)

  • Park, Jeong-Hae;Park, Jung-Ae;Kang, Seok-Woo;Goo, Tae-Won;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1778-1783
    • /
    • 2011
  • Hematopoietic cytokines regulate production of blood cells by stimulating proliferation and differentiation of bone marrow cells. Among these hematopoietic cytokines, called hematopoitic growth factors, glranulocyte-colony stimulating Factor (G-CSF), which regulates growth of neutrophils, is one of important therapeutic factors because cancer patients suffer with neutropenia which is severe reduction of neutrophils after chemotherapy. Two groups of recombinant G-CSF have approved and used for therapeutic purposes and many researches are still on-going to produce recombinant G-CSF by different techniques. We engineered human G-CSF with Bombyx specific endoplasmic reticulum (ER) signal sequence, therefore, secretion of human G-CSF protein was improved in Bombyx mori-origined cell line, Bm5. The Bombyx ER signal sequence and human G-CSF matured protein region chimera was further remodeled at the N-terminus of matured G-CSF protein to understand roles of N-terminus on outer cellular secretion and/or production. Three different mutants were generated deleting three amino acids in non alpha-helical region in N-terminus in order to scan important amino acids for G-CSF secretion. One of 3 different N-terminal deletion mutants showed dramatically reduction of secreted amount of G-CSF indicating its important role on secretion. The data suggest that remodeling in non alpha-helical region of N-terminus is also important for recombinant G-CSF production.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Establishment and Characterization of Bone Marrow Mesenchymal Stromal/Stem Cells (MSCs) Derived from ${\alpha}$-1,3-Galactosyltransferase Knock Out(GalT KO) Pig (${\alpha}$-1,3-Galactosyltransferase Knock Out(GalT KO) 돼지유래 골수 중간엽 줄기세포의 특성 규명)

  • Ock, Sun-A;Oh, Keon Bong;Hwang, Seongsoo;Im, Seoki;Kim, Youngim;Park, Jin-Ki
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.281-287
    • /
    • 2013
  • A major barrier to progress in pig to primate organ transplantation or cell therapy is the presence of terminal ${\alpha}$-1,3-galactosyl epitopes on the surface of pig cells. Therefore, the purpose of this experiment was to establish and cha- racterize mesenchymal stromal/stem cells (MSCs) derived from ${\alpha}$-1,3-galactosyltransferase (GalT) knock out (GalT KO) pig to confirm their potential for cell therapy. Bone marrow (BM)-MSCs from GalT KO pig of 1 month old were isolated by Ficoll-Paque PLUS gradient and cultured with A-DMEM + 10% FBS on plastic dishes in 5% $CO_2$ incubator at 38.5. GalT KO BM-MSCs were analyzed for the expression of CD markers ($CD45^-$, $29^+$, $90^+$ and $105^+$) and in vitro differentiation ability (adiopogenesis and osteogenesis). Further, cell proliferation capacity and cell aging of GalT KO BM-MSCs were compared to Wild BM-MSCs by BrdU incorporation assay (Roche, Germany) using ELISA at intervals of two days for 7 days. Finally, the cell size was also evaluated in GalT KO and Wild BM-MSCs. Statistical analysis was performed by T-test (P<0.05). GalT KO BM-MSCs showed fibroblast-like cell morphology on plastic culture dish at passage 1 and exhibited $CD45^-$, $29^+$, $90^+$ and $105^+$ expression profile. Follow in ginduction in StemPro adipogenesis and osteogenesis media for 3 weeks, GalT KO BM-MSCs were differentiated into adipocytes, as demonstrated by Oilred Ostaining of lipid vacuoles and osteocytes, as confirmed by Alizarinred Sstaining of mineral dispositions, respectively. BrdU incorporation assay showed a significant decrease in cell proliferation capacity of GalT KO BM-MSCs compared to Wild BM-MSCs from 3 day, when they were seeded at $1{\times}10^3$ cells/well in 96-well plate. Passage 3 GalT KO and Wild BM-MSCs at 80% confluence in culture dish were allowed to form single cells to calculate cell size. The results showed that GalT KO BM-MSCs($15.0{\pm}0.4{\mu}m$) had a little larger cell size than Wild BM-MSCs ($13.5{\pm}0.3{\mu}m$). From the above findings, it is summarized that GalT KO BM-MSCs possessed similar biological properties with Wild BM-MSCs, but exhibited a weak cell proliferation ability and resistance to cell aging. Therefore, GalT KO BM-MSCs might form a good source for cell therapy after due consideration to low proliferation potency in vitro.

Bibliographic Study on the Therapy of Lung Cancer by Integrated Oriental and Western Medicine (폐암(肺癌)의 동서의결합치료(東西醫結合治療)에 관(關)한 문헌적(文獻的) 고찰(考察))

  • Whang, Choong-Yeon
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.177-194
    • /
    • 1995
  • The following conclusions were obtained after bibliographic investigation on the therapy of lung cancer by western, oriental, and integrated oriental and western medicine. 1. Lung cancer is classified into small cell lung cancer(SCLC) or non small cell lung cancer(NSCLC) in the treatment by western medicine, and applied with the means of surgery, radiotherapy and chemotherapy alone or combined, depending on the stage and the symptom. 2. Treatment by oriental medicine includes the means of strengthening body resistance to dispel pathogenic factors(扶正祛邪), combined approach of reinforcement and expulsion(攻補兼施), and reinforcing both qi and blood(氣血雙補), depending on the initial, middle, and terminal stage. And also treatment based on differentiation of symptom(辨證施治) is applied according to the type of symptom; deficiency of qi of both lung and spleen(肺脾氣虛), heat symptom of lung by deficiency of yin(肺熱陰虛), stagnation of damp-phlegm and blood(濕痰瘀阻), stagnation of qi and blood(氣血瘀滯), deficiency of both qi and yin(氣陰兩虛). Single or combined herb drug is used according to the symptom. 3. Treatment by integrated oriental and western medicine improved survival rate and quality of life. It promoted recovery and improved survival rate in the patients receiving surgery. Integrated radiotherapy and oriental medicine treatment reduced adverse effect by radiotherapy and improved therapeutic effect and survival rate. Integrated chemotherapy with oriental medicine treatment reduced side effect by chemotherapy and improved quality of life and survival rate. These results suggest that therapy of lung cancer should be applied with integrated oriental and western medicine from diagnosis to treatment for promoting therapeutic effect. And further study on this therapy should be ensued.

  • PDF

Loss of the Retinoblastoma Gene in Non-Small Cell Lung Cancer (비소세포폐암에서의 망막모세포종유전자의 소실)

  • Lee, Choon-Taek;Kim, Chang-Min;Zo, Jae-Ill;Shim, Young-Mog;Hong, Weon-Seon;Lee, Jhin-Oh;Kang, Tae-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 1993
  • Background: Inactivation of retinoblastoma gene (Rb) has been observed in a variety of human cancers. Loss of heterozygosity (LOH) of Rb which is a common mode of allelic inactivation of Rb, has been known as a frequent genetic event in small cell lung cancer but it has been detected less frequently in non-small cell lung cancer. To define the role of Rb deletion in lung cancer, we investigated the genomic DNAs of 43 non-small cell lung cancers and 1 small cell lung cancer paired with normal lung tissues obtained by thoracotomy. Methods: The genomic DNAs were obtained by the digestion with proteinase K followed by phenol-chloroform extraction method. The genomic DNAs were digested by restriction endonuclease (EcoRI), separated by agarose gel electrophoresis, transferred to nylon membrane by Southern blot transfer and then hybridized with labelled Rb 1 probe which contains. 1.4 kb sized DNA sequence containing N-terminal portion of Rb. Results: In 26 squamous cell lung cancers, 16 cases were informative after EcoRI digestion and LOH of Rb was found in 10 cases (62.5%). In 17 adenocarcinomas of lung, 11 cases were informative and LOH of Rb was found in five cases (45.4%). The analysis of clinical parameters revealed no significant differences between the two groups with or without LOH of Rb in the aspects of age, sex, degree of differentiation, stage and smoking amount. Conclusions: These results suggest that Rb inactivation is also significantly involved in the molecular pathogenesis of non-small cell lung cancer.

  • PDF