The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions

우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구

  • Suk Won, Lim (R&D Center of Skin Science & Cosmetics, Enprani Co.,) ;
  • Sung Won, Jung (R&D Center of Skin Science & Cosmetics, Enprani Co.,) ;
  • Sung Ku, Ahn (Department of Dermatology, College of Medicine, Yonsei University) ;
  • Bora, Kim (R&D Center of Skin Science & Cosmetics, Enprani Co.,) ;
  • In Young, Kim (R&D Center of Skin Science & Cosmetics, Enprani Co.,) ;
  • Hee Chang , Ryoo (R&D Center of Skin Science & Cosmetics, Enprani Co.,) ;
  • Seung Hun, Lee (Department of Dermatology, College of Medicine, Yonsei University)
  • Published : 2004.09.01

Abstract

Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Ursolic acid (UA)와 oleanolic acid (ONA)는 pentacyclic triterpenoid 성분으로 많은 식물들과 의학, 임상용 허브 등에 존재한다. 이런 UA나 ONA는 free acid 형태로 나타나거나, 1개 이상의 당이 연결된 aglycone으로 triterpenoid 배당체를 구성한다. UA와 ONA는 유사한 구조를 가지며 비슷한 약리효과를 나타내는 것으로 알려져 있다. 최근 연구에 의하면, 항종양, 간보호, 항염증, 함암 및 항균역할을 하는 것으로 보고되고 있다. 우리는 급성 장벽손상 및 정상 무모쥐 피부에 미치는 영항에 대한 연구를 했다. UA와 ONA의 피부장벽 회복에 대한 효과를 평가하기 위해서, 8-12주 된 무모쥐를 테이프 스트리핑 한 후, 한쪽 옆구리에 0.01 -0.1mg/mL 농도로 UA 또는 ONA를 국소도포하고 한쪽에는 vehicle만 처치하여 경표피 수분손실(TEWL)량을 측정하였다. UA (0.1mg/mL)와 ONA (0.5mg/mL)를 처리한 그룹의 회복률이 vehicle 처리군에 비해 테이프 스트리핑 후 6 h에서 20% 이상 증가했다.(p < 0.01). 또한 UA와 ONA의 급성장벽손상 회복과 함께 정상 피부장벽 기능에 미치는 영향을 확인하였다. 정상 피부장벽 기능에 대한 효과를 알아보기 위해, 보습력과 경표피 수분손실량을 UA와 ONA (각 2 mg/mL)를 처리한 1주째와 3주째에 측정하였고, 또한 표피와 진피의 상태를 확인하기 위해서 현미경 관찰을 실시하였다. 두 시료를 1주째부터 vehicle 도포군과 비교, 경표피 수분손실 없이 보습력을 증가시켰다(p < 0.005). 전자현미경 사진을 통해 UA와 ONA 도포에 따라 분비되는 층판소체의 증감(ONA$\geq$UA$\geq$vehicle)과 지질이중막 구조 이상 여부를 확인하였다 Light microscopy를 통해 각질층의 두께가 약간 증가함을 보였으며, 특히 표피두께 강화와 편평 현상이 나타났다(UA < ONA < Vehicle). 우리는 또한 UA와 ONA가 PPAR $\alpha$를 통해 표피 각질세포의 분화를 촉진함을 관찰하였다. Western blotting 실험을 통해, 표피 각질세포 분화와 관련된 involucrin, loricrin, filaggrin의 단백질 발현이 최소한 2-3배 이상 증가함을 HaCaT 세포에 UA와 ONA(각 10$\mu$M)를 24 h 처리 후 실험 결과로 확인할 수 있었다. 이런 결과를 토대로 UA와 ONA가 장벽기능 향상뿐 아니라 PPAR $\alpha$를 통한 표피 각질세포 분화를 유도함을 제시할 수 있었다. Masson-trichrome과 elastic fiber 염색법을 통해서, UA와 ONA 도포에 따른 콜라겐섬유의 비후(thickening)와 엘라스틴섬유의 신장(elongation)을 조직 사진으로 확인하였다. 시험관 시험을 통한 콜라겐 및 엘라스틴 합성실험과 엘라스틴 분해효소에 대한 저해능 평가를 통해 진피에 대한 UA와 ONA의 효과를 확인할 수 있었다. 이런 결과들을 토대로 UA와 ONA는 피부장벽기능 유지뿐 아니라, 진피 내 콜라겐섬유와 엘라스틴섬유 합성을 촉진하는 것을 관찰할 수 있었다. 이 결과로부터, UA와 ONA는 장벽기능 및 진피강화에 관여할 수 있는 기능성 화장품으로의 응용에 적절한 후보 물질로 제안할 수 있겠다.

Keywords

References

  1. N. Y. Schurer, and P. M. Elias, The biochemistry and function of stratum corneum lipids. In: Elias P (ed.) Skin Lipids, Advances in Lipid Res San Diego: Academic Press, 24, 27 (1991)
  2. D. T. Downing, Lipid and protein structures in the permeability barrier of mammalian epidermis, J Lipid Res., 33, 301 (1992)
  3. P. M. Steinert, The complexity and redundancy of epithelial barrier function, J Cell Biol, 151, F5 (2000) https://doi.org/10.1083/jcb.151.2.F5
  4. P. W. Wertz and D. T. Downing, Epidermal lipids. In: L. A. Golsmith (ed.) Physiology, Biochemistry and Molecular Biology of the skin New York: Oxford University Press, 205 (1991)
  5. M. A. Lampe, M. L. Williams, and P. M. Elias, Human epidermal lipids: characterization and modulations during differentiation, J Lipid Res., 24, 131 (1983)
  6. P. M. Elias and G. K. Menon, Structural and lipid biochemical correlates of the epidermal permeability barrier, Adv Lipid Res., 24, 1 (1991)
  7. G. Imokawa, S. Akasaki, A. Kawamata, and M. Kawai, Water-retaining function in the stratum corneum and its recovery properties by synthetic pseudoceramide, J. Soc. Cosmet. Chem, 40, 273 (1989)
  8. M. T. Huang, C. T. Ho, Z. Y. Wang, T. Ferraro, Y. R. Lou, K. Stauber, W. Ma, and C. Gecrgiadis, Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid, Cancer. Res., 154(3), 701 (1994)
  9. H. Tokuda, H. Ohigashi, K. Koshimizu, and Y. Ito, Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate, Cancer Letters, 33, 279 (1986)
  10. H. Ohigashi, H. Takamura, K. Koshimizu, H. Tokuda, and Y. Ito, Search for possible antitumor promoters by inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus activation;ursolic acid and oleanolic acid from an anti-inflammatory Chinese medicinal plant, Glechoma hederaceae L., Cancer Lett, 30(2), 143 (1986)
  11. F. Hollosy, G. Meszaros, G. Bokonyi, M. Idei, A. Seprodi, B. Szende, and G. Keri, Cytotoxic and protein tyrosine kinase inhibitory activity of ursolic acid in A431 human tumor cells, Anticancer Res., 20, 4563 (2000)
  12. C. Y. Choi, H. J. You, and H. G. Jeong, Nitric oxide and tumor necrosis factor-a production by oleanolic acid via NF-kB activation in macrophages, Biochem. Bioptiys. Res. Commun, 288, 49 (2001)
  13. K. Subbaramaiah, P. Michaluart, M. B. Sporn, and A. J. Dannenberg, Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells, Cancer Res., 60, 2399 (2000)
  14. S. B. Mahto, S. K. Sarkar, and G. Poddar, phytochemistry, 7, 3037 (1988)
  15. J. Liu, Pharmacology of oleanolic acid and ursolic acid, J. Ethnopharmacol, 49, 57 (1995)
  16. D. J. Mangelsdorf and R. M. Evans, The RXR heterodimers and orphan receptors, Cell, 83, 841 (1995)
  17. K. Schoonjans, B. Staels, and J. Auwerx, Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression, J. Lipid. Res., 37, 907 (1996)
  18. S. Kersten, B. Desvergne, and W. Wahli, Roles of PPAR in health and disease, Nature, 405, 421 (2000)
  19. M. River, I. Safonova, P. Lebrun, C. E. Griffiths, G. Ailhaud, and S. Michel, Differential expression of peroxisome proliferator-activated receptor subtypes during the differentiation of keratinocytes, J. Invest. Dermatol, 111, 1116 (1998)
  20. M. River, I. Casiel, I. Safonova, G. Ailhaud, and S. Michel, Peroxisome proliferator activated receptorenhances lipid metabolism in a skin equivalent model, J. Invest. Dermatol, 114, 681 (2000)
  21. K. Hanley, Y. Jiang, S. S. He, M. Friedman, P. M. Elias, D. D. Bikle, M. L. Williams, and K. R. Feingold, Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor peroxisome proliferator-activated receptor-$\alpha$, J. Invest. Dermatol, 110, 368 (1998)
  22. K. Hanley, Y. Jiang, D. Crumrine, N. M. Bass, R. Appel, P. M. Elias, M. L. Williams, and K. R. Feingold, Activators of the nuclear hormone receptors PPAR $\alpha$ and FXR accelerate the development of the fetal epidermal permeability barrier, J. Clin. Invest., 100, 705 (1997)
  23. K. Hanley, L. G. Komuves, N. B. Bass, S. S. He, Y. Jiang, D. Crumrine, R. Appel, M. Friedman, J. Bettencourt, K. Min, P. M. Elias, M. L. Williams, and K. R. Feingold, Fetal epidermal differentiation and barrier development in vivo is accelerated by nuclear hormone receptor activators, J. Invest. Dermatol., 113, 788 (1999)
  24. L. G. Komuves, K. Hanley, A. M. Lefebver, M. Q. man, D. C. Ng, D. D. Bikle, M. L. Williams, P. M. Elias, J. Auwerx, and K. R. Feingold, Stimulation of PPAR $\alpha$ promotes epidermal keratinocyte differentiation in vivo, J. Invest. Dermatol., 115, 353 (2000)
  25. L. G. Komuves, K. Hanley, M. Q. Man, P. M. Elias, M. L. Williams, and K. R. Feingold, Keratinocytes differentiation in hyperproliferative epidermis: topical application of PPAR $\alpha$ activators restores tissue homeostasis, J. Invest. Dermatol., 115, 361 (2000)
  26. J. Pinnagoda, R. A. Tupker, T. Agner, and J. Serup, Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis, Contact Dermatitis. 22, 164 (1990)
  27. G. Grubauer, K. R. Feingold, and P. M. Elias, Transepidermal water loss: the signal for recovery of barrier structure and function, J. Lipid. Res., 30, 323 (1989)
  28. E. H. Choi, S. K. Ahn, and S. H. Lee, The changes of stratum corneum interstices and calcium distribution of follicular epithelium of experimentally induced comedones (EIC) by oleic acid, Exp Dermatol. 6, 29 (1997)
  29. S. K. Ahn, S. M. Hwang, S. J. Jiang, E. H. Choi, and S. H. Lee, The changes of epidermal calcium gradient and transitional cells after prolonged occlusion following tape stripping in murine epidermis, J. Invest. Dermatol., 113, 189 (1999)
  30. H. Keller, C. Dreyer, J. Medin, A. Mahfoudi, K. Ozato, and W. Wahli, Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers, Proc. Natl. Acad Sci., 90, 2160 (1993)
  31. K. Yu, W. Bayona, C. B. Kallen, H. P. Harding, C. P. Ravera, G. MaMahon, M. Brown, and M. A. Lazar, Differential activation of peroxisome proliferator-activated receptors by eicosanoids, J. Biol. Chem, 270, 23975 (1995)
  32. H. Q. Tang, J. Hu, L. Yang, and R. X. Tan, Terpenoids and flavonoids from Artemisia species, Planta Med, 66, 391 (2000)
  33. T. S. Jeong, E. I. Hwang, H. B. Lee, E. S. Lee, Y. K. Kim, B. S. Min, K. H. Bae, S. H. Bok, and S. C. Kim, Chitin synthase II inhibitory activity of ursolic acid, isolated from Crataegus pinnatifida, Planta Med, 65, 261 (1999)
  34. S. Marquina, N. Maldonado, M. L. Garduno-Ramirez, E. Aranda, M. L. Villarreal, V. Navarro, and R. Bye, Bioactive oleanolic acid saponins and other constituents from the roots of Viguiera decurrens, Phytochemistry, 56, 93 (2001)
  35. Y. Kashiwada, T. Nagao, A. Hashimoto, Y. Ikeshiro, H. Okabe, L. M. Cosentine, and K. H. Lee, Anti-AIDS agents 38. Anti-HIV activity of 3-Oacyl ursolic acid derivatives, J. Nat. Prod, 63, 1619 (2000)
  36. C. Ma, N. Nakamura, M. Hattori, H. Kakuda, J. Qiao, and H. Yu, Inhibitory effects on HIV-l protease of constituents from the wood of Xanthoceras sorbifolia, J. Nat. Prod, 63, 238 (2000)
  37. M. E. Alvarez, A. O. Maria, and J. R. Saad, Diuretic activity of Fabiana patagonica in rats, Phytother Res., 16, 71 (2002)
  38. H. Assefa, A. Nimrod, L. Walker, and R. Sindelar, Enantioselective synthesis and complement inhibitory assay of A/B-ring partial analogues of oleanolic acid, Bioorg. Med Chem. Lett, 11, 1619 (2001)
  39. T. K. Yim, W. K. Wu, W. F. Pak, and K. M. Ko, Hepatoprotective action of an oleanolic acid-enriched extract of Ligustrum lucidum fruits is mediated through an enhancement on hepatic glutathione regeneration capacity in mice, Phytother. Res., 15, 589 (2001)
  40. B. Saraswat, P. K. Visen, and D. P. Agarwal, Ursolic acid isolated from Eucalyptus tereticornis protects against ethanol toxicity in isolated rat hepatocytes, Phytother. Res; 14, 163 (2000)
  41. P. G. Latha and K. R. Panikkar, Modulatory effects of ixora coccinea flower on cyclophosphamide-induced toxicity in mice, Phytother. Res; 13, 517 (1999) https://doi.org/10.1002/(SICI)1099-1573(199909)13:6<517::AID-PTR524>3.0.CO;2-Y
  42. H. G. Jeong, Inhibition of cytochrome P450 2E1 expression by oleanolic acid hepatoprotective effects against carbon tetrachloride-induced hepatic injury, Toxicol. Lett., 105, 215 (1999)
  43. H. Ismaili, S. Tortora, S. Sosa, S. Fkih-Tetouani, A. llidrissi, R. Della Loggia, A. Tubaro, and R. Aquino, Topical anti-inflammatory activity of Thymus willdenowii, J. Pharm. Pharmacol., 53, 1645 (2001)
  44. E. M. Giner-Larza, S. Manez, M. C. Recio, R. M. Giner, J. M. Prieto, M. Cerda-Nicolas, and J. L. Rios, Oleanolic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity, Eur. J. Pharmacol., 428, 137 (2001)
  45. S. Y. Ryu, M. H. Oak, S. K. Yoon, D. I. Cho, G. S. Yoo, T. S. Kim, and K. M. Kim, Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris, Planta Med, 66, 358 (2000)
  46. D. Baricevic, S. Sosa, Della Loggia R, A. Tubaro, B. Simonovska, A. Krasna, and A. Zupancic, Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid, J. Ethnopharmacol, 75, 125 (2001)
  47. J Li, L. Z. Xu, and W. P. Zhu, Effects of ursolic acid and oleanolic acid on Jurkat lymphoma cell line in vitro, Zhongguo Aizheng Zazhi, 9, 395 (1999)
  48. F. Hollosy, M. Idei, G. Csorba, E. Szabo, G. Bokonyi, A. Seprodi, G. Meszaros, B. Szende, and G. Keri, Activation of caspase-3 protease during the process of ursolic acid and its derivative-induced apoptosis, Anticancer. Res., 21, 3485 (2001)
  49. M. Y. Rios, A. Gonzalez-Morales, and M. L. Villarreal, Sterols, triterpenes and biflavonoids of Viburnum jucundum and cytotoxic activity of ursolic acid, Planta. Med, 67, 683 (2001)
  50. C. Martin-Cordero, M. Reyes, M. J. Ayuso, and M. Y. Toro, Cytotoxic triterpenoids from Erica andevalensis, Z Naturforsch [C], 56, 45 (2001)
  51. F. Lauthier, L. Taillet, P. Trouillas, C. Delage, and A. Simon, Ursolic acid triggers calcium-dependent apoptosis in human Daudi cells, Anticancer Drugs, 11, 737 (2000)
  52. H. H. Ko, M. H. Yen, R. R. Wu, S. J. Won, and C. B. Lin, Cytotoxic isoprenylated flavans of Broussonetia kazinoki, J. Nat. Prod., 62, 164 (1999)
  53. H. J. Cha, M. T. Park, H. Y. Chung, N. D. Kim, H. Sato, M. Seiki, and K. W. Kim, Ursolic acid induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells, Oncogene, 16, 771 (1998)
  54. Y. Muto, M. Ninomiya, and H. Fujiki, Present status research on cancer chemoprevention in Japan, Japanese J. Clinical Oncology, 20, 219 (1990)
  55. L. Landmann, Epidermal permeability barrier: transformation of lamella-granule disks into intercellular sheets by membrane-fusion process, a freeze-fracture study, J. Invest. Dermatol., 87, 202 (1986) https://doi.org/10.1111/1523-1747.ep12695343
  56. H. Matsuura, H. Adachi, R. C. Smart, X. Xu, J. Arata, and A. M. Jetten, Correlation between expression of peroxisome proliferator-activated receptor $\beta$ and tracheobronchial epithelial cells, Mol. Cell. Endocrinol., 147, 85 (1999) https://doi.org/10.1016/S0303-7207(98)00214-7
  57. S. A. Kliwer, K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans, Convergence of 9-cisretinoid and peroxisome proliferator signaling pathways through heterodimer formation of their receptors, Nature, 358, 771 (1992)
  58. R. Mukherjee, J. Strasser, L. Jow, P. Hoener, J. R. Jr Paterniti, and R. A. Heyman, RXR agonists activate PPAR-inducible genes, lower triglycerides, and raise HDL levels in vivo, Arterioscler Thromb Vasc Biol, 18, 272 (1998)
  59. E. Fuchs, Epidermal differentiation: the bare essentials, J. Cell. BioI., 111, 2807 (1990)
  60. Y. Wang, W. W. Porter, N. Suh, T. Honda, G. W. Gribble, L. M. Lessenitzer, K. D. Plunket, D. J. Mangelsdorf, S. G. Blanchard, T. M. Willson, and M. B. Sporn, A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), is a ligand for the peroxisome proliferator-activated receptor g, Mol Endocrinol, 14, 1550 (2000)
  61. H. E. Xu, M. H. Lambert, V. G. Montana, K. D. Plunket, L. B. Moore, J. L. Collins, J. A. Oplinger, S. A. Kliewer, R. T. Jr Gampe, D. D. Mckee, J. T. Moore, and T. M. Willson, Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors, Proc. Natl. Acad. Sci. USA., 94, 4318 (1997)
  62. H. E. Xu, M. H. Lambert, V. G. Montana, D. J. Parks, S. G. Blanchard, P. J. Brown, D. D. Sternbach, J. M. Lehmann, G. B. Wisely, T. M. Willson, S. A. Kliewer, and M. V. Milburn, Molecular recognition of fatty acids by peroxisome proliferator-activated receptors, Mol. Cell, 3, 397 (1999)
  63. M. Gottlicher, E. Widmark, Q. Li, and J. A. Gustafsson, Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor, Proc. Natl. Acad. Sci. USA, 15, 89, 4653 (1992)
  64. M. Gottlicher, A. Demoz, D. Svensson, P. Tollet, R. K. Berge, and J. A. Gustafsson, Structural and metabolic requirements for activators of the peroxisome proliferator-activated receptor, Biochem Pharmacol., 46, 2177 (1993)
  65. S. A. Kliewer, S. S. Sundseth, and S. A. Jones et al., Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors, Proc. Natl. Acad. Sci. USA, 94, 4318 (1997)
  66. J. Rogers, C. Harding, A. Mayo, J. Banks, and A. Rawlings, Stratum corneum lipids: the effects of ageing and the seasons, Arch Dermatol. Res., 288, 765 (1996)
  67. D. Both, K. Goodzova, D. B. Yarosh, and D. A. Brown, Liposome-encapsulated ursolic acid increased ceramides and collagen in human skin cells, Arch Dermatol. Res., 293, 569 (2002)
  68. C. E. M. Griffiths and J. J. Voorhees, Topical retinoic acid for photoaging: clinical response and underlying mechanisms, Skin. Pharmacol., 6, 70 (1993)
  69. G. J. Gendimenico, and J. A. Mezick, Pharmacological effects of retinoids on skin cells, Skin Pharmacol., 6, 24 (1993)
  70. M. Ponec, A. Weerheim, and J. Kempenaar, Retinoids and lipid changes in keratinocytes, Methods. Enzymol., 190:30
  71. Y. Nishimori, H. Tsuruoka, and K. Matsumoto, A new approach for the improvement of photoaged skin through collagen fiber bundle reconstruction mechanism, In: Proceedings of the 20th International Federation of Societies of Cosmetic. Chemists: Congress, Section O009, 1
  72. D. B. Yarosh, D. Both, and D. Brown, Liposomal ursolic acid (merotaine) increases ceramides and collagen in human skin, Horm Res, 54, 318 (2000)
  73. A. E. K. James, D. W. Timothy, and L. Gorden, Inhibition of human leucocyte and porcine pancreatic elastase by homologues of bovine pancreatic truosin inhibitors, Biochemistry, 35, 9090 (1996)
  74. J. Uitto and E. F. Bernstein, Molecular mechanisms of cutaneous aging: connective tissue alterations in the dermis, J. Invest. Dermaiol., 3, 41 (1998)
  75. K. Tsukahara, S. Moriwaki, T. Fujimura, and Y. Takema, Inhibitory effect of an extract of Sangui-sorba officinalis L. on ultraviolet-B-induced photo-damage of rat skin, Biol. Pharm Bull., 24, 998 (2001)
  76. J. L. Bolognia, I. M. Braverman, M. E. Rousseau and P. M. Sarrel, Skin changes in menopause, Maturitas, 11, 295 (1989)