Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.10.1140

Crystal Structure of an Activity-enhancing Mutant of DUSP19  

Ju, Da Gyung (Department of Bioengineering, College of Engineering, Hanyang University)
Jeon, Tae Jin (Department of Bioengineering, College of Engineering, Hanyang University)
Ryu, Seong Eon (Department of Bioengineering, College of Engineering, Hanyang University)
Publication Information
Journal of Life Science / v.28, no.10, 2018 , pp. 1140-1146 More about this Journal
Abstract
Dual-specificity phosphatases (DUSPs) play a role in cell growth and differentiation by modulating mitogen-activated protein kinases. DUSPs are considered targets for drugs against cancers, diabetes, immune diseases, and neuronal diseases. Part of the DUSP family, DUSP19 modulates c-Jun N-terminal kinase activity and is involved in osteoarthritis pathogenesis. Here, we report screening of cavity-creating mutants and the crystal structure of a cavity-creating L75A mutant of DUSP19 which has significantly enhanced enzyme activity in comparison to the wild-type protein. The crystal structure reveals a well-formed cavity due to the absent Leu75 side chain and a rotation of the active site-bound sulfate ion. Despite the cavity creation, residues surrounding the cavity did not rearrange significantly. Instead, a tightened hydrophobic interaction by a remote tryptophan residue was observed, indicating that the protein folding of the L75A mutant is stabilized by global folding energy minimization, not by local rearrangements in the cavity region. Conformation of the rotated active site sulfate ion resembles that of the phosphor-tyrosine substrate, indicating that cavity creation induces an optimal active site conformation. The activity enhancement by an internal cavity and its structural information provide insight on allosteric modulation of DUSP19 activity and development of therapeutics.
Keywords
Activity enhancement; allosteric modulation; DUSP19; protein tyrosine phosphatase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. and Zwart, P. H. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221.   DOI
2 Bermudez, O., Pages, G. and Gimond, C. 2010. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am. J. Physiol. Cell Physiol. 299, C189-202.   DOI
3 Boopathy, S., Silvas, T. V., Tischbein, M., Jansen, S., Shandilya, S. M., Zitzewitz, J. A., Landers, J. E., Goode, B. L., Schiffer, C. A. and Bosco, D. A. 2015. Structural basis for mutation-induced destabilization of profilin 1 in ALS. Proc. Natl. Acad. Sci. USA. 112, 7984-7989.   DOI
4 Chen, Y. N., LaMarche, M. J., Chan, H. M., Fekkes, P., Garcia-Fortanet, J., Acker, M. G., Antonakos, B., Chen, C. H., Chen, Z., Cooke, V. G., Dobson, J. R., Deng, Z., Fei, F., Firestone, B., Fodor, M., Fridrich, C., Gao, H., Grunenfelder, D., Hao, H. X., Jacob, J., Ho, S., Hsiao, K., Kang, Z. B., Karki, R., Kato, M., Larrow, J., La Bonte, L. R., Lenoir, F., Liu, G., Liu, S., Majumdar, D., Meyer, M. J., Palermo, M., Perez, L., Pu, M., Price, E., Quinn, C., Shakya, S., Shultz, M. D., Slisz, J., Venkatesan, K., Wang, P., Warmuth, M., Williams, S., Yang, G., Yuan, J., Zhang, J. H., Zhu, P., Ramsey, T., Keen, N. J., Sellers, W. R., Stams, T. and Fortin, P. D. 2016. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148-152.
5 Choy, M. S., Li, Y., Machado, L., Kunze, M. B. A., Connors, C. R., Wei, X., Lindorff-Larsen, K., Page, R. and Peti, W. 2017. Conformational rigidity and protein dynamics at distinct timescales regulate PTP1B activity and allostery. Mol. Cell 65, 644-658 e645.   DOI
6 Duric, V., Banasr, M., Licznerski, P., Schmidt, H. D., Stockmeier, C. A., Simen, A. A., Newton, S. S. and Duman, R. S. 2010. A negative regulator of MAP kinase causes depressive behavior. Nat. Med. 16, 1328-1332.   DOI
7 Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501.
8 Jeon, T. J., Nam, K. T. and Ryu, S. E. 2015. Structural analysis of activity-modulating mutations of DUSP19. Biodesign 3, 111-116.
9 Keyse, S. M. 2008. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27, 253-261.
10 Krishnan, N., Koveal, D., Miller, D. H., Xue, B., Akshinthala, S. D., Kragelj, J., Jensen, M. R., Gauss, C. M., Page, R., Blackledge, M., Muthuswamy, S. K., Peti, W. and Tonks, N. K. 2014. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558-566.   DOI
11 Li, G., Yu, M., Lee, W. W., Tsang, M., Krishnan, E., Weyand, C. M. and Goronzy, J. J. 2012. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518-1524.   DOI
12 Mukherjee, J. and Gupta, M. N. 2015. Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnol. Rep. (Amst) 6, 119-123.   DOI
13 Park, S. Y., Ha, S. C. and Kim, Y. G. 2017. The protein crystallography beamlines at the Pohang Light Source II. Biodesign 5, 30-34.
14 Patterson, K. I., Brummer, T., O'Brien, P. M. and Daly, R. J. 2009. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418, 475-489.
15 Pulido, R. and Hooft van Huijsduijnen, R. 2008. Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J. 275, 848-866.   DOI
16 Ryu, S. E. and Kim, S. J. 2014. Targeting allosteric sites for protein tyrosine phosphatase inhibition. Biodesign 2, 81-90.
17 Stanford, S. M., Aleshin, A. E., Zhang, V., Ardecky, R. J., Hedrick, M. P., Zou, J., Ganji, S. R., Bliss, M. R., Yamamoto, F., Bobkov, A. A., Kiselar, J., Liu, Y., Cadwell, G. W., Khare, S., Yu, J., Barquilla, A., Chung, T. D. Y., Mustelin, T., Schenk, S., Bankston, L. A., Liddington, R. C., Pinkerton, A. B. and Bottini, N. 2017. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nat. Chem. Biol. 13, 624-632.   DOI
18 Wei, C. H. and Ryu, S. E. 2016. Structural mobility of the active site in classical protein tyrosine phosphatases and dual specificity phosphatases. Biodesign 4, 77-87.
19 Wang, Y., Xu, Z., Wang, J. and Xu, S. 2016. DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis. Mol. Biosyst. 12, 721-728.   DOI
20 Wei, C. H., Ryu, S. Y., Jeon, Y. H., Yoon, M. Y., Jeong, D. G., Kim, S. J. and Ryu, S. E. 2011. Crystal structure of a novel mitogen-activated protein kinase phosphatase, SKRP1. Proteins 79, 3242-3246.   DOI
21 Wei, C. H., Min, H. G., Kim, M., Kim, G. H., Chun, H. J. and Ryu, S. E. 2018. Two intermediate states of the conformational switch in dual specificity phosphatase 13a. Pharmacol. Res. 128, 211-219.   DOI
22 Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. and Wilson, K. S. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242.   DOI
23 Xia, Y., DiPrimio, N., Keppel, T. R., Vo, B., Fraser, K., Battaile, K. P., Egan, C., Bystroff, C., Lovell, S., Weis, D. D., Anderson, J. C. and Karanicolas, J. 2013. The designability of protein switches by chemical rescue of structure: mechanisms of inactivation and reactivation. J. Am. Chem. Soc. 135, 18840-18849.   DOI
24 Yao, Z. Z., Hu, A. X. and Liu, X. S. 2017. DUSP19 regulates IL-1beta-induced apoptosis and MMPs expression in rat chondrocytes through JAK2/STAT3 signaling pathway. Biomed. Pharmacother. 96, 1209-1215.
25 Zama, T., Aoki, R., Kamimoto, T., Inoue, K., Ikeda, Y. and Hagiwara, M. 2002. Scaffold role of a mitogen-activated protein kinase phosphatase, SKRP1, for the JNK signaling pathway. J. Biol. Chem. 277, 23919-23926.   DOI
26 Zama, T., Aoki, R., Kamimoto, T., Inoue, K., Ikeda, Y. and Hagiwara, M. 2002. A novel dual specificity phosphatase SKRP1 interacts with the MAPK kinase MKK7 and inactivates the JNK MAPK pathway. Implication for the precise regulation of the particular MAPK pathway. J. Biol. Chem. 277, 23909-23918.   DOI