• 제목/요약/키워드: Tensile creep

검색결과 232건 처리시간 0.03초

변형률 적합성을 고려한 토목섬유 보강재의 장기허용강도 결정 모델 (Model to Determine Long-term Allowable Strength of Geosynthetics Reinforcements Considering Strain Compatibility)

  • 전한용;유증조;목문성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1580-1587
    • /
    • 2005
  • To calculate the long-term allowable strength of geosynthetic reinforcement, replacement method was recommended. The isochronous creep curve by S. Turner was used to define the relation between creep strain and allowable strength. In isochronous curve at given time, one can read the allowable strength at allowable creep strain. The allowable strain gets from specification by directors or manufacturers according to the allowable displacement of reinforced structures. The allowable strength can be determined in relation to the allowable horizontal displacement each structures case by case. The effect of install damage on isochronous behaviors of geosynthetic reinforcement was little. In previous study, install damage increase the creep strain slightly. And the degradation was not identified. But it is supposed that degradation increase the creep strain. In conclusion, The recommended model to determine long-term allowable strength of geosynthetic reinforcements considering tensile deformation of reinforcement and soil is fit for proper, correct and economic design for reinforced earth walls.

  • PDF

25Cr-13Ni 스테인리스강의 고온 크리프-피로거동에 관한 연구 (High Temperature Creep-Fatigue Behavior of 25Cr-13Ni Stainless Steel)

  • 송전영;안용식
    • 열처리공학회지
    • /
    • 제28권2호
    • /
    • pp.68-74
    • /
    • 2015
  • The low cycle fatigue (LCF) and creep-fatigue (hold time tension fatigue, HTTF) tests were performed on the modified 25Cr-13Ni cast stainless steel, which was selected as a candidate material for exhaust manifold in automotive engine. The exhaust manifold is subjected to an environment in which heating and cooling cycle occur due to the running pattern of automotive engine. Several types of fatigue behaviour such as thermal fatigue, thermal mechanical fatigue and creep-fatigue are belong to the main failure mechanisms. High temperature tensile test was firstly carried out to compare the sample with the traditional cast steel for the component. The low cycle fatigue and HTTF tests were carried out under the strain controlled condition with the total strain amplitude from ${\pm}0.6%$ to ${\pm}0.7%$ at $800^{\circ}C$. The hysteresis loops of HTTF tests showed significant stress relaxation during tension hold time. With the increase of tension hold time, the fatigue life was remarkably deceased which caused from the formation of intercrystalline crack by the creep failure mechanism.

Mg-Al 합금의 크리프 거동에 미치는 합금원소의 영향 (Effect of Alloying Elements on Creep Behavior of Mg-Al Alloys)

  • 임현규;김세광;김도향
    • 한국주조공학회지
    • /
    • 제32권1호
    • /
    • pp.44-49
    • /
    • 2012
  • In this study, three magnesium alloys were investigated; those are 1.5wt.% CaO added AM80, 1.0wt.% CaO added AM60, and conventional MRI153 alloys. Test specimens of three alloys were prepared by re-melting and casting into steel mold with ingots and machining. The mechanical properties and the creep behavior at 150 degrees Celsius of these specimens were determined and their microstructures were characterized using OM and SEM. For the application to die-casting, fluidity test were carried out with spiral mold. Compared with 1.0wt.% CaO added AM60 alloy, 1.5wt.% CaO added AM80 alloy exhibited good creep properties in all test conditions. Moreover, CaO added alloys showed better creep properties than MRI153 alloy at lower load condition. It is proposed that 1.5wt.% CaO added AM80 alloy is useful to apply to power-train parts such as transmission case in vehicles.

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제6권3호
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.

Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8

  • Brnic, Josip;Brcic, Marino;Krscanski, Sanjin;Lanc, Domagoj;Chen, Sijie
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.409-417
    • /
    • 2019
  • The choice of individual material for industrial application is primarily based on knowledge of its behavior in similar applications and similar environmental conditions. Contemporary design implies knowledge of material behavior and knowledge in the area of structural analysis supported by large capacity computers. Bearing this in mind, this paper presents and analyzes the experimental results related to the mechanical properties of the material considered (30CrNiMo8/1.6580/AISI 4340) at different temperatures as well as its creep and fatigue behavior. All experimental tests were carried out as uniaxial tests. The test results related to the mechanical properties are presented in the form of engineering stress-strain diagrams. The results related to the creep behavior of the material are shown in the form of creep curves, while the fatigue of the material is shown in the form of stress - life (S - N) diagram. Based on these experimental results, the values of the following properties are determined: ultimate tensile strength (${\sigma}_{m,20}=696MPa$), yield strength (${\sigma}_{0.2,20}=355.5MPa$), modulus of elasticity ($E_{,20}=217GPa$) and fatigue limit (${\sigma}_{f,20,R=-1}=280.4MPa$). Results related to fatigue tests were obtained at room temperature and stress ratio R = -1.

수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究) (Mechanical and Rheological Properties of Rice Plant)

  • 허윤근;차균도
    • 농업과학연구
    • /
    • 제14권1호
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

온도 및 구속응력을 고려한 토목섬유의 크리프거동에 관한 연구 (A Study on Creep Behavior of Geosynthetics Considering Effect of Temperature and Confining Stress)

  • 방윤경;김홍택
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.291-299
    • /
    • 2003
  • 본 연구에서는, 토목섬유의 크리프시험시 온도 및 토목섬유에 가해지는 구속응력을 제어할 수 있도록 고안된 온도제어 구속크리프시험(Temperature Dependent Confined Creep Test)을 수행하였다. 시험결과를 토대로, 시험온도 및 구속응력의 크기가 토목섬유의 크리프특성에 미치는 영향을 정량적으로 분석하였으며, 장기적인 크리프변위를 예측하기 위하여 시간-온도 중첩원리를 이용한 합성곡선을 작도하여, 1$\times$$10^7$min.(Geomembrane D)∼1$\times$$10^{10}$min.(Geogrid T)까지의 크리프변위를 예측하였다. 본 합성곡선에 의해, 토목섬유에 가해지는 구속하중에 따른 토목섬유의 이동계수(shift factor)를 도출하였다. 온도제어 구속크리프시험은 시트형 지오그리드와 지오멤브레인을 대상으로 하였으며, 시험온도는 5∼4$0^{\circ}C$의 범위로, 구속하중의 크기는 0∼9t/$cm^2$의 범위로 하였다.

Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동 (Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes)

  • 이상용;고산;최영철;김규태;최재하;홍순익
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동 (Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member)

  • 유영준;박영환;김형열;최진원;김장호
    • 콘크리트학회논문집
    • /
    • 제25권2호
    • /
    • pp.187-194
    • /
    • 2013
  • 섬유복합체(FRP)는 비부식성 재료라는 특징으로 인해 이상적인 철근 대체재로 주목 받고 있다. 그러나 현재 FRP 보강근은 철근과 달리 일반적으로 수용되는 고정된 형태가 존재하지 않고 다양한 재료와 성분비, 형태 등으로 제작되기 때문에 이에 대한 성능평가 데이터에 근거한 FRP 보강 콘크리트 부재의 거동특성 구명은 상당부분 제한될 수 있다. 더군다나 FRP 보강 콘크리트 부재의 휨거동에 대한 평가는 주로 단기 거동 측면에 집중되어 이루어져 왔다. 이 연구는 GFRP 보강근 및 이를 사용하여 보강된 콘크리트 부재의 장기거동을 평가하기 위한 것으로, 먼저 철근 대체용으로 개발된 GFRP 보강근에 대한 성능평가 결과를 제시하였고, 이의 크리프 거동 특성에 대한 3년간의 계측 결과를 제시하였다. 실험 결과 인장강도의 약 55% 이하의 하중이 지속적으로 재하되는 경우에는 100년 이상의 내구연한을 확보할 수 있는 것으로 나타났다. 또한 GFRP 보강 콘크리트 보의 장기거동을 약 1년간 관찰하였으며 이로부터 FRP 보강 부재의 장기처짐 계산식에 사용되는 수정계수 값 0.73을 도출하였다. 따라서 이 연구로부터 도출된 GFRP 보강근 및 이로 보강된 콘크리트 보의 단기 및 장기 거동 특성값은 FRP 보강 콘크리트 부재의 설계에 유용하게 활용될 수 있을 것으로 사료된다.

A Study on the Creep and Autogenous Shrinkage of High Performance Concrete with Expansive Additive and Shrinkage Reducing Admixtures at Early Age

  • Park, Sun-Gyu;Noguchi, Takafumi;Kim, Moo-Han
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.73-77
    • /
    • 2006
  • This paper shows a study of the efficiency of expansive additive and shrinkage reducing admixture in controlling restrained shrinkage cracking of high performance concrete at early age. Free autogenous shrinkage test of $100{\times}100{\times}400mm$ concrete specimens and simulated completely-restrained test with VRTM(variable restraint testing machine) were performed. Creep and autogenous shrinkage of high-performance concrete with and without expansive additive and shrinkage reducing admixture were investigated by experiments that provided data on free autogenous shrinkage and restrained shrinkage. The results showed that the addition of expansive additive and shrinkage reducing admixture effectively reduced autogenous shrinkage and tensile stress in the restrained conditions. Also, it was found that the shrinkage stress was relaxed by 90% in high-performance concrete with and without expansive additive and shrinkage reducing admixtures at early age.