Browse > Article
http://dx.doi.org/10.12656/jksht.2015.28.2.68

High Temperature Creep-Fatigue Behavior of 25Cr-13Ni Stainless Steel  

Song, Jeon-Young (Dept. of Materials Sci. & Eng., Pukyong National University)
Ahn, Yong-Sik (Dept. of Materials Sci. & Eng., Pukyong National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.28, no.2, 2015 , pp. 68-74 More about this Journal
Abstract
The low cycle fatigue (LCF) and creep-fatigue (hold time tension fatigue, HTTF) tests were performed on the modified 25Cr-13Ni cast stainless steel, which was selected as a candidate material for exhaust manifold in automotive engine. The exhaust manifold is subjected to an environment in which heating and cooling cycle occur due to the running pattern of automotive engine. Several types of fatigue behaviour such as thermal fatigue, thermal mechanical fatigue and creep-fatigue are belong to the main failure mechanisms. High temperature tensile test was firstly carried out to compare the sample with the traditional cast steel for the component. The low cycle fatigue and HTTF tests were carried out under the strain controlled condition with the total strain amplitude from ${\pm}0.6%$ to ${\pm}0.7%$ at $800^{\circ}C$. The hysteresis loops of HTTF tests showed significant stress relaxation during tension hold time. With the increase of tension hold time, the fatigue life was remarkably deceased which caused from the formation of intercrystalline crack by the creep failure mechanism.
Keywords
23Cr-13Ni stainless steel; Creep-fatigue; Tension hold time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. G. Jung, S. T. Oh, W. D. Choi, D. H. Lee, J. D. Lim and Y. J. Oh : J. Kor. Inst. Met. & Mater. 47 (2009) 707
2 G. Y. Lu, M. B. Behling and G. R. Halford : Fatigue. Fract. Engng. Mater. Struct. 23 (2000) 787.   DOI
3 J. J. Thomas, L. Verger, A. Bifnonnet and E. Charkaluk : Fatigue. Fract. Engng. Mater. Struct. 27 (2004) 887.   DOI
4 T. Sakamoto, Y. Nakagawa, H. Nakajima, H. S. Shimamoto, I. Yamauchi and T. Zaizen : Advances in cryogenic engineering materials, 30 (1984) 137.
5 J. C. An and G. S. Lee : J. Kor. Inst. Met. & Mater. 42 (2004) 338.
6 ASM Specialty Handbook : Cast Irons (1996) 123-130.
7 M. Tendo, Y. Tadokori, K. Suetsugu and T. Nakazawa : ISIJ International, 41 (2001) 262.   DOI
8 H. Sieurin, J. Zander and R. Sandstroem : Mater. Sci. Eng. A 415 (2006) 66.   DOI
9 C. Y. Jeong, S. W. Nam and J. Ginsztler : J. Mater. Sci. 34 (1990) 2513
10 B. G. Gieseke, C. R. Brinkman and P. J. Maziasz : Microstructure and mechanical properties of aging material, Minerals, Metals and Materials Society, TMS (1993) 197
11 S. Kim and J. R. Weertmann : Metall. Trans. A 19A (1988) 999.
12 P. Lukas, L. Kunz and V. Skelnicka : Mater. Sci. Eng. A129 (1990) 249.
13 M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo, B. Fournier and A. Pineau : Mater. Sci. Eng. A400-401 (2005) 241.
14 B. Fournier, M. Sauzay, C. Caes, M. Noblecourt and M. Mottot : Mater. Sci. Eng. A 437 (2006) 183.
15 S. K. Paul, S. Sivaprasad, S. Dhar and S. Tarafder : Theoretical and Applied Fracture Mechanics, 54 (2010) 63   DOI
16 B. Fournier et al, : Mater. Sci. Eng. A 528 (2011) 6934.   DOI
17 D. W. Chang. J. H. Kim and W. S. Ryu : Int. J. pressure vessels and piping 85 (2008) 378   DOI
18 C. R. Brinkman : Int. Metals Rev., 30 (1985) 235
19 Y. Takahashi : Int. J. pressure vessels and piping 85 (2008) 406   DOI