Browse > Article
http://dx.doi.org/10.4334/JKCI.2013.25.2.187

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member  

You, Young-Jun (Structural Engineering Research Division, Korea Institute of Construction Technology)
Park, Young-Hwan (Structural Engineering Research Division, Korea Institute of Construction Technology)
Kim, Hyung-Yeol (Structural Engineering Research Division, Korea Institute of Construction Technology)
Choi, Jin-Won (School of Civil and Environmental Engineering, Yonsei University)
Kim, Jang-Ho Jay (School of Civil and Environmental Engineering, Yonsei University)
Publication Information
Journal of the Korea Concrete Institute / v.25, no.2, 2013 , pp. 187-194 More about this Journal
Abstract
Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.
Keywords
FRP; rebar; creep; pultrusion; long-term deflection;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 ACI Committee 440, "ACI 440.1 R-06. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars," American Concrete Institute, 2006, pp. 6-8, 124.
2 Choi, D. W., Ha, S. S., and Lee, C. H., "Development Length of GFRP Rebars Based on Pullout Test," Journal of the Korea Concrete Institute, Vol. 19, No. 3, 2007, pp. 323-331.   과학기술학회마을   DOI   ScienceOn
3 Sim, J. S., Oh, H. S., Ju, M. K., and Lim, J. H., "New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar," Journal of the Korea Concrete Institute, Vol. 20, No. 2, 2008, pp. 185-191.   과학기술학회마을   DOI   ScienceOn
4 Seo, D. W., Han, B. S., and Shin, S. W., "Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars," Journal of the Korea Concrete Institute, Vol. 19, No. 6, 2007, pp. 763-771.   과학기술학회마을   DOI   ScienceOn
5 Youssef, T., Benmokrane, B., El-Gamal S., and El-Salakawy, Y. E., "Deflection and Strain Variation of GFRP-Reinforced Concrete Beams After One Year of Continuous Loading," In: Proceeding of 9 International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-9), Sydney, Australia, 2009, pp. 1-4.
6 Vijay, P. V., Aging and Design of Concrete Members Reinforced with GFRP Bars, Ph.D Thesis, West Virginia University, 1999, pp. 2-3, 166-169.
7 Brown, V. L., "Sustained Load Deflections in GFRPReinforced Concrete Beams," In: Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), Japan Concrete Institute, Sapporo, Japan, Vol. 2, 1997, pp. 495-502.
8 Kage, T., Masuda, Y., Tanano, Y., and Sato, K., "Long- Term Deflection of Continuous Fiber Reinforced Concrete Beams," In: Proceedings of the Second International RILEM Symposium (FRPRCS-2), Ghent, Belgium, 1995, pp. 251-258.
9 Trejo, D., Aguiñiga, F., Robert, L. Y., Ray, W. J., and Peter, B. K., "Characterization of Design Parameters for Fiber Reinforced Polymer Concrete Systems," Report 9-1520-3, Texas A&M University and Texas Transportation Institute, 2003, 115 pp.
10 ISIS Canada, Design Manual 3: Reinforcing Concrete Structures with Fiber Reinforced Polymers, The Canadian Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, 2001, pp. 5-16.
11 Joh, O., Wang, Z., and Goto, Y., "Long-Term Deflection Fiber Reinforced Polymer Concrete Beams," Fourth International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, ACI International, 1999, pp. 577-590.
12 Karbhari, V. M., Chin, J. W., Hunston, D., Benmokrane, B., Juska, T., Morgan, R., Lesko, J. J., Sorathia, U., and Reynaud, D., "Durability Gap Analysis for Fiber-Reinforced Polymer Composites in Civil Infrastructure," Journal of Composites for Construction, Vol. 7, No. 3, 2003, pp. 238-247.   DOI   ScienceOn
13 Iyer, S. L. and Anigol, M., "Testing and Evaluating Fiber Glass, Graphite and Steel Cables for Pretensioned Beams," Advanced Composite Materials in Civil Engineering Structures, Proceedings of the Specialty Conference, ASCE, 1991, pp. 44-56.
14 Uomoto, T. and Nishimura, T., "Deterioration of Aramid, Glass, and Carbon Fibers Due to Alkali, Acid, and Water in Different Temperatures," Fourth International Symposium on Fiber-Reinforced Polymer Reinforcement for Reinforced Concrete Structures (SP-188), ACI International, 1999, pp. 515-522.
15 Yamaguchi, T., Kato, Y., Nishimura, T., and Uomoto, T., "Creep Model of FRP Rods Based on Fiber Damaging Rate," In: Proceedings of the First International Conference, 1998, pp. 427-438.
16 Rahman, A. H., Kingsley, C. Y., and Crimi, J., "Behavior of FRP Grid Reinforcement for Concrete Under Sustained Load," In: RILEM Proceedings(FRPRCS 2), 1995, pp. 90-99.
17 Yousef, A. A. and Tarek, H. A., "Creep Effect on the Behavior of Concrete Beams Reinforced with GFRP Bars Subjected to Different Environments," Construction and Building Materials, Vol. 21, Issue 7, 2007, pp. 1510-1519. (doi: http://dx.doi.org/10.1016/j.conbuildmat.2006.05.008)   DOI   ScienceOn
18 ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (318R-05), American Concrete Institute, Farmington Hills, Mich., 2005, 123 pp.
19 Vijay, P. V. and GangaRao, H. V. S., "Creep Behavior of Concrete Beams Reinforced with GFRP Bars," International Conference (CDCC'98), Sherbrooke, Quebec, Canada, 1998, pp. 661-667.
20 Laoubi, K., El-Salakawy, E., and Benmokrane, B., "Creep and Durability of Sand-Coated Glass FRP Bars in Concrete Elements under Freeze/Thaw Cycling and Sustained Loads," Cement and Concrete Composites, Vol. 28, Issue 10, 2009, pp. 869-878. (doi: http://dx.doi.org/10.1016/j.cemcon comp.2006.07.014)   DOI   ScienceOn
21 Aguíñiga, F. and Estrada, H., "Creep Induced Deflections of Concrete Elements Reinforced with Polymer Composite Bars," Architectural Engineering Conference (AEI) 2006, Omaha, Nebraska, United States, 2006, pp. 1-11.
22 Gross, S., Yost, J., and Kevgas, G., "Time-Dependent Behavior of Normal and High Strength Concrete Beams Reinforced With GFRP Bars Under Sustained Loads," High Performance Materials in Bridges, ASCE, 2003, pp. 451-462.
23 You, Y. J., Park, Y. H., Park, J. S., and Kim, K. H., "Development of FRP Rebar for Concrete Structures in Korea," Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Patras, Greece, 2007, pp. 440-441.
24 CSA Standard, Design and Construction of Building Components with Fibre-Reinforced Polymers, Canadian Standards Association, S806-02, 2002, pp. 106-115.
25 ACI Committee 440, ACI 440.3R-04. Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures, American Concrete Institute, 2004, pp. 10-11.