DOI QR코드

DOI QR Code

High Temperature Creep-Fatigue Behavior of 25Cr-13Ni Stainless Steel

25Cr-13Ni 스테인리스강의 고온 크리프-피로거동에 관한 연구

  • Song, Jeon-Young (Dept. of Materials Sci. & Eng., Pukyong National University) ;
  • Ahn, Yong-Sik (Dept. of Materials Sci. & Eng., Pukyong National University)
  • 송전영 (부경대학교 공과대학 재료공학과) ;
  • 안용식 (부경대학교 공과대학 재료공학과)
  • Received : 2015.02.05
  • Accepted : 2015.02.16
  • Published : 2015.03.31

Abstract

The low cycle fatigue (LCF) and creep-fatigue (hold time tension fatigue, HTTF) tests were performed on the modified 25Cr-13Ni cast stainless steel, which was selected as a candidate material for exhaust manifold in automotive engine. The exhaust manifold is subjected to an environment in which heating and cooling cycle occur due to the running pattern of automotive engine. Several types of fatigue behaviour such as thermal fatigue, thermal mechanical fatigue and creep-fatigue are belong to the main failure mechanisms. High temperature tensile test was firstly carried out to compare the sample with the traditional cast steel for the component. The low cycle fatigue and HTTF tests were carried out under the strain controlled condition with the total strain amplitude from ${\pm}0.6%$ to ${\pm}0.7%$ at $800^{\circ}C$. The hysteresis loops of HTTF tests showed significant stress relaxation during tension hold time. With the increase of tension hold time, the fatigue life was remarkably deceased which caused from the formation of intercrystalline crack by the creep failure mechanism.

Keywords

References

  1. J. G. Jung, S. T. Oh, W. D. Choi, D. H. Lee, J. D. Lim and Y. J. Oh : J. Kor. Inst. Met. & Mater. 47 (2009) 707
  2. G. Y. Lu, M. B. Behling and G. R. Halford : Fatigue. Fract. Engng. Mater. Struct. 23 (2000) 787. https://doi.org/10.1046/j.1460-2695.2000.00310.x
  3. J. J. Thomas, L. Verger, A. Bifnonnet and E. Charkaluk : Fatigue. Fract. Engng. Mater. Struct. 27 (2004) 887. https://doi.org/10.1111/j.1460-2695.2004.00746.x
  4. T. Sakamoto, Y. Nakagawa, H. Nakajima, H. S. Shimamoto, I. Yamauchi and T. Zaizen : Advances in cryogenic engineering materials, 30 (1984) 137.
  5. J. C. An and G. S. Lee : J. Kor. Inst. Met. & Mater. 42 (2004) 338.
  6. ASM Specialty Handbook : Cast Irons (1996) 123-130.
  7. M. Tendo, Y. Tadokori, K. Suetsugu and T. Nakazawa : ISIJ International, 41 (2001) 262. https://doi.org/10.2355/isijinternational.41.262
  8. H. Sieurin, J. Zander and R. Sandstroem : Mater. Sci. Eng. A 415 (2006) 66. https://doi.org/10.1016/j.msea.2005.09.031
  9. C. Y. Jeong, S. W. Nam and J. Ginsztler : J. Mater. Sci. 34 (1990) 2513
  10. B. G. Gieseke, C. R. Brinkman and P. J. Maziasz : Microstructure and mechanical properties of aging material, Minerals, Metals and Materials Society, TMS (1993) 197
  11. S. Kim and J. R. Weertmann : Metall. Trans. A 19A (1988) 999.
  12. P. Lukas, L. Kunz and V. Skelnicka : Mater. Sci. Eng. A129 (1990) 249.
  13. M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo, B. Fournier and A. Pineau : Mater. Sci. Eng. A400-401 (2005) 241.
  14. B. Fournier, M. Sauzay, C. Caes, M. Noblecourt and M. Mottot : Mater. Sci. Eng. A 437 (2006) 183.
  15. S. K. Paul, S. Sivaprasad, S. Dhar and S. Tarafder : Theoretical and Applied Fracture Mechanics, 54 (2010) 63 https://doi.org/10.1016/j.tafmec.2010.06.016
  16. B. Fournier et al, : Mater. Sci. Eng. A 528 (2011) 6934. https://doi.org/10.1016/j.msea.2011.05.046
  17. D. W. Chang. J. H. Kim and W. S. Ryu : Int. J. pressure vessels and piping 85 (2008) 378 https://doi.org/10.1016/j.ijpvp.2007.11.013
  18. C. R. Brinkman : Int. Metals Rev., 30 (1985) 235
  19. Y. Takahashi : Int. J. pressure vessels and piping 85 (2008) 406 https://doi.org/10.1016/j.ijpvp.2007.11.008