• 제목/요약/키워드: Tensile & Yield Strength

검색결과 652건 처리시간 0.025초

열처리한 교정용 호선의 기계적 성질과 금속유리에 대한 연구 (THE EFFECTS OF HEAT TREATMENT ON MECHANICAL PROPERTIES AND METAL RELEASE FROM HEAT-TREATED ORTHODONTIC ARCHWIRES)

  • 최철민;이병태
    • 대한치과교정학회지
    • /
    • 제20권2호
    • /
    • pp.381-390
    • /
    • 1990
  • The purpose of this study was to evaluate the effects of heat treatment on mechanical properties in $0.016^{{\prime}{\prime}}{\times}0.022^{{\prime}{\prime}}$ blue Elgiloy wires and to measure the amounts of nickel and chromium released from the wires in artificial saliva. Ultimate tensile strength, yield strength and elongation were measured with universal testing machine (Instron). and the amounts of nickel and chromium released from the sample were measured with atomic absorption spectrophotometer after one week immersion in the artificial saliva. Ultimate tensile strength and yield strength were progressively increased below $1000^{\circ}F$, but elongation was decreased. And the results were reversed above $1100^{\circ}F$. After heat treatment of the sample for 9 minutes at $1000^{\circ}F$, the maximum tensile strength and yield strength were $213.6kg/mm^2$, $140.1kg/mm^2$, respectively. Both tensile strength and yield strength were decreased progressively above $1100^{\circ}F$. Elongation was appeared the minimum value (8.6%) after heat treatment for 9 minutes and 12 minutes at $1000^{\circ}F$. There was a pronounced increase in nickel and chromium liberation with increasing time and temperature. The maximum amounts of nickel and chromium released form the sample were $4.947{\mu}m/cm^2$, $3.088{\mu}g/cm^2$, respectively after heat treatment for 12 minutes at $1300^{\circ}F$. Heat treatment is applied to orthodontic wires, especially cobalt-chromium alloys, for the purpose of stress-relievning and hardening. When the heat-treatment of orthodontic wires, the heating procedure should be well controlled in order to have no effect on corrosion resistance and mechanical properties.

  • PDF

항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구 (Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point)

  • 윤승채;문만빈;김형섭
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.598-604
    • /
    • 2010
  • Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

산화막 성장이 지르코늄 합금의 기계적 물성 열화에 미치는 영향 (Effects of Oxide Growth on Mechanical Properties Degradation of Zirconium Alloys)

  • 전상환;김용수
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.579-586
    • /
    • 2004
  • A study on the effects of oxide growth on the mechanical properties degradation of pure zirconium and Zircaloy-4 is carried out with high temperature tensile tests. It is found that the mechanical properties can deteriorate with the oxide growth less than $1\%$ of total specimen cross section, especially at $300\~400^{\circ}C$ that is zirconium alloy cladding temperature during the nuclear reactor operation. It is also revealed that Young's modulus changes little but yield strength and tensile strength drop down to $20\% and 40\%$ of the room temperature strength, respectively, in the temperature range. Fractographic analysis shows that the number of dimples decreases and fractured surface becomes smooth with increasing oxide thickness.

냉간 단조용 비조질강의 성형성과 기계적성질 연구 (The Study on the Mechanical Properties and Formability of Non-Heat-Treated Cold Forging Steels)

  • 이영선;이정환;이상용
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.530-538
    • /
    • 1998
  • Elimination of the heat treatment process is very important in automation of metal forming since controlling heat treatment by computer has many difficulties and it has bottle neck problem. non-heat-treated steels materials which are not in need of heat treatment have been developed for cold forging. However to apply non-heat-treated steel to structural parts. it is necessary to prove reliability of mechanical properties. In order to define the reliability of mechanical properties we have investigated microstructure, hardness, the tensile strength compressive strength and tensile fatigue strength for both steels. Considering the results of high cycle fatigue test for both specimen the characteristics of non-heat-treated steel are decided on the yield strength, It has same tendency for heat-treated steel. Therefore non-heat-treated steel which has the appropriate yield strength may be applied in cold forging.

  • PDF

Mn 및 V 함량이 다른 페라이트-펄라이트 조직강의 강도와 변형능에 미치는 미세조직 인자의 영향 (Effect of Microstructural Factors on the Strength and Deformability of Ferrite-Pearlite Steels with Different Mn and V Contents)

  • 홍태운;이상인;심재혁;이준호;이명규;황병철
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.570-577
    • /
    • 2018
  • This study examines the effect of microstructural factors on the strength and deformability of ferrite-pearlite steels. Six kinds of ferrite-pearlite steel specimens are fabricated with the addition of different amounst of Mn and V and with varying the isothermal transformation temperature. The Mn steel specimen with a highest Mn content has the highest pearlite volume fraction because Mn addition inhibits the formation of ferrite. The V steel specimen with a highest V content has the finest ferrite grain size and lowest pearlite volume fraction because a large amount of ferrite forms in fine austenite grain boundaries that are generated by the pinning effect of many VC precipitates. On the other hand, the room-temperature tensile test results show that the V steel specimen has a longer yield point elongation than other specimens due to the highest ferrite volume fraction. The V specimen has the highest yield strength because of a larger amount of VC precipitates and grain refinement strengthening, while the Mn specimen has the highest tensile strength because the highest pearlite volume fraction largely enhances work hardening. Furthermore, the tensile strength increases with a higher transformation temperature because increasing the precipitate fraction with a higher transformation temperature improves work hardening. The results reveal that an increasing transformation temperature decreases the yield ratio. Meanwhile, the yield ratio decreases with an increasing ferrite grain size because ferrite grain size refinement largely increases the yield strength. However, the uniform elongation shows no significant changes of the microstructural factors.

SLM 공정 기법으로 제작한 AlSi10Mg 인장특성에 관한 연구 (Study on Tensile Properties of AlSi10Mg produced by Selective Laser Melting)

  • 김무선
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.25-31
    • /
    • 2018
  • 선택적 레이저 용융 (Selective Laser Melting) 기법은 금속 소재를 다루는 대표적인 3D 프린팅 기법중의 하나이다. SLM 기법으로 제작되는 구조물의 특성을 좌우하는 주요 제작 인자로는 구조물의 적층 제작 방향, 레이저 파워, 레이저 스캔 스피드 및 스캔 간격 등을 고려할 수 있다. 이번 연구에서는 AlSi10Mg 합금을 대상 소재로 하여, 인장 시편의 제작 방향, 레이저 스캔 스피드 및 스캔 간격을 변수로 하여, 인장특성 결과를 비교 분석하였다. 인장특성으로는 항복 응력, 인장강도 및 연신율을 고려하였다. 시험결과로부터, 인장 시편의 제작 방향 기준으로 0도, 45도, 90도 순서로 항복 응력 값이 낮아짐을 확인하였다. 레이저 스캔 스피드 기준으로는 1870mm/min에서 가장 큰 항복 응력값을 보였으며, 스캔 스피드가 낮아질수록 항복 응력 크기도 줄어들었다. 레이저 스캔 간격 기준으로, 그 크기가 증가할수록 항복 응력값은 증가하지만, 다른 시험 기준에 비해 그 변화폭은 가장 적었다. 인장강도 및 연신율은 시험조건에 따른 명확한 경향성을 파악하기 어려웠다.

인장-전단하중을 받는 점 용접재의 변형률 분포 특성 평가 (Evaluation on the Properties of Strain Distribution of the sopt welding specimen under tensile-shear load)

  • 김덕중
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.113-118
    • /
    • 1999
  • In order to evaluate strength of spot welded joint, at first it is importent that we should know strain distribution near nugget zone. During loading, in HAZ, compressive strain increase with Increase of load, but in nugget zone tensile strain increase. During unloading, on the other hand, even through the decreases, the strain variation is not almost appeared in nugget zone and HAZ. In nugget boundary zone, the strain range increases continuously along with load increase on outer surface, but the strain increases continunously and decreases rapidly beyond yield strength on inner surface. In this paper, strain distribution are measured in inner and outer surface with variation of thickness and load under tensile-shear load. Tensile-shear strength increased as with increase of specimen thickness. As for thickness increase rates are 25%, 50%, 100%, and 150%, tensile-shear strength in crease rates are 40%, 81%, 130% and 228%.

  • PDF

GTD-111DS 소재의 고온 인장 특성 평가 (Evaluation of High Temperature Tensile Properties in GTD-111DS)

  • 박홍선;김형익;이영민;석창성;김문영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1358-1362
    • /
    • 2005
  • The Ni-base superalloy GTD-111DS was designed in the 1970s and is widely used as the material of the first stage blade under a severe combination of temperature and pressure in gas turbines. But because GTD-111DS is distributed in the shape of blade and blade has a unique figure and many cooling channels, it is hard to manufacture the test specimen. In this reason, there are little data on the microstructure and mechanical properties of the alloy. Therefore through the microstructure analysis, present paper observed that the shape of $\gamma{'}$ did not change even if aging time was increased but the amount and volume of the deposition of secondary $\gamma{'}\;rose\;and\;secondary\;\gamma{'}\;grew\;among\;primary\;\gamma{'}$. Also, by tensile test for different temperature, there was difference between yield strength and tensile strength in room temperature on heat treatment and extracting region but the more increasing temperature, the more decreasing difference between yield strength and tensile strength.

  • PDF

Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion

  • Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Hyoung Seop Kim;Jae Wung Bae;Jeong Min Park
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.8-15
    • /
    • 2024
  • The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBF-processed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.