DOI QR코드

DOI QR Code

Effect of Microstructural Factors on the Strength and Deformability of Ferrite-Pearlite Steels with Different Mn and V Contents

Mn 및 V 함량이 다른 페라이트-펄라이트 조직강의 강도와 변형능에 미치는 미세조직 인자의 영향

  • Hong, Tae-Woon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Sang-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Shim, Jae-Hyeok (High Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Junho (Department of Materials and Engineering, Korea University) ;
  • Lee, Myoung-Gyu (Department of Materials Science and Engineering, Seoul National University) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 홍태운 (서울과학기술대학교 신소재공학과) ;
  • 이상인 (서울과학기술대학교 신소재공학과) ;
  • 심재혁 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 이준호 (고려대학교 신소재공학부) ;
  • 이명규 (서울대학교 재료공학부) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2018.08.30
  • Accepted : 2018.09.10
  • Published : 2018.10.27

Abstract

This study examines the effect of microstructural factors on the strength and deformability of ferrite-pearlite steels. Six kinds of ferrite-pearlite steel specimens are fabricated with the addition of different amounst of Mn and V and with varying the isothermal transformation temperature. The Mn steel specimen with a highest Mn content has the highest pearlite volume fraction because Mn addition inhibits the formation of ferrite. The V steel specimen with a highest V content has the finest ferrite grain size and lowest pearlite volume fraction because a large amount of ferrite forms in fine austenite grain boundaries that are generated by the pinning effect of many VC precipitates. On the other hand, the room-temperature tensile test results show that the V steel specimen has a longer yield point elongation than other specimens due to the highest ferrite volume fraction. The V specimen has the highest yield strength because of a larger amount of VC precipitates and grain refinement strengthening, while the Mn specimen has the highest tensile strength because the highest pearlite volume fraction largely enhances work hardening. Furthermore, the tensile strength increases with a higher transformation temperature because increasing the precipitate fraction with a higher transformation temperature improves work hardening. The results reveal that an increasing transformation temperature decreases the yield ratio. Meanwhile, the yield ratio decreases with an increasing ferrite grain size because ferrite grain size refinement largely increases the yield strength. However, the uniform elongation shows no significant changes of the microstructural factors.

Keywords

References

  1. J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim and Y. W. Chang, Met. Mater. Int., 20, 27 (2014). https://doi.org/10.1007/s12540-014-1008-y
  2. J. K. Hwang, I. H. Son, J. Y. Yoo, A. Zargaran and N. J. Kim, Met. Mater. Int., 21, 815 (2015). https://doi.org/10.1007/s12540-015-5273-1
  3. B. Hwang, J. H. Shim, M. G. Lee, J. Lee, J. H. Jung, B. S. Kim and S. B. Won, Korean J. Met. Mater., 54, 862 (2016). https://doi.org/10.3365/KJMM.2016.54.12.862
  4. M. Wang, F. Zhang and Z. Yang, Mater. Des., 114, 102 (2017). https://doi.org/10.1016/j.matdes.2016.10.049
  5. N. Tsuchida, T. Inoue, H. Nakano and T. Okamoto, Mater. Lett., 160, 117 (2015). https://doi.org/10.1016/j.matlet.2015.07.093
  6. G. Miyamoto, Y. Karube and T. Furuhara, Acta Mater., 103, 370 (2016). https://doi.org/10.1016/j.actamat.2015.10.032
  7. J. H. Shim, B. Hwang, M. G. Lee and J. H. Lee, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 62, 67 (2018). https://doi.org/10.1016/j.calphad.2018.05.005
  8. B. Hwnag and C. G. Lee, Mater. Sci. Eng., A, 527, 4341 (2010). https://doi.org/10.1016/j.msea.2010.03.106
  9. F. B. Pickering and B. Garbarz, Scr. Metall., 21, 249 (1987). https://doi.org/10.1016/0036-9748(87)90207-9
  10. T. Gladman, I. D. Mcivor and F. B. Pickering, J. Iron Steel Inst., 210, 916 (1972).
  11. M. Calcagnotto and D. Ponge, Metall. Mater. Trans. A, 43, 37 (2012). https://doi.org/10.1007/s11661-011-0828-3
  12. S. W. Seo, H. K. D. H. Bhadeshia and D. W. Suh, Mater. Sci. Technol., 31, 487 (2015). https://doi.org/10.1179/1743284714Y.0000000641
  13. C. Zener and J. H. Holloman, J. Appl. Phys., 15, 22 (1944). https://doi.org/10.1063/1.1707363
  14. K. B. Kang, O. Kwon, W. B. Lee and C. G. Park, Scr. Mater., 36, 1303 (1997). https://doi.org/10.1016/S1359-6462(96)00359-4
  15. S. S. Hansen, J. B. V. Sande and M. Cohen, Metall. Trans. A, 11, 387 (1980). https://doi.org/10.1007/BF02654563
  16. B. E. O'Donnelly, R. L. Reuben and T. N. Baker, Met. Technol., 11, 45 (1984). https://doi.org/10.1179/030716984803274837
  17. G. E. Dieter, Mechanical Metallurgy, ed. D. Bacon, McGraw-Hill (1988).
  18. S. I. Lee, S. W. Lee, S. G. Lee, S. Lee, H. G. Jung and B. Hwang, Korean J. Met. Mater., 56, 413 (2018). https://doi.org/10.3365/KJMM.2018.56.6.413
  19. L. Wang, D. Tang and Y. Song, J. Iron Steel Res. Int., 24, 321 (2017). https://doi.org/10.1016/S1006-706X(17)30046-8
  20. A. R. Marder and B. L. Bramfitt, Metall. Mater. Trans. A, 7, 365 (1976). https://doi.org/10.1007/BF02642832