Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.10.570

Effect of Microstructural Factors on the Strength and Deformability of Ferrite-Pearlite Steels with Different Mn and V Contents  

Hong, Tae-Woon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Sang-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Shim, Jae-Hyeok (High Temperature Energy Materials Research Center, Korea Institute of Science and Technology)
Lee, Junho (Department of Materials and Engineering, Korea University)
Lee, Myoung-Gyu (Department of Materials Science and Engineering, Seoul National University)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.10, 2018 , pp. 570-577 More about this Journal
Abstract
This study examines the effect of microstructural factors on the strength and deformability of ferrite-pearlite steels. Six kinds of ferrite-pearlite steel specimens are fabricated with the addition of different amounst of Mn and V and with varying the isothermal transformation temperature. The Mn steel specimen with a highest Mn content has the highest pearlite volume fraction because Mn addition inhibits the formation of ferrite. The V steel specimen with a highest V content has the finest ferrite grain size and lowest pearlite volume fraction because a large amount of ferrite forms in fine austenite grain boundaries that are generated by the pinning effect of many VC precipitates. On the other hand, the room-temperature tensile test results show that the V steel specimen has a longer yield point elongation than other specimens due to the highest ferrite volume fraction. The V specimen has the highest yield strength because of a larger amount of VC precipitates and grain refinement strengthening, while the Mn specimen has the highest tensile strength because the highest pearlite volume fraction largely enhances work hardening. Furthermore, the tensile strength increases with a higher transformation temperature because increasing the precipitate fraction with a higher transformation temperature improves work hardening. The results reveal that an increasing transformation temperature decreases the yield ratio. Meanwhile, the yield ratio decreases with an increasing ferrite grain size because ferrite grain size refinement largely increases the yield strength. However, the uniform elongation shows no significant changes of the microstructural factors.
Keywords
steel; ferrite-pearlite; microstructural factor; strength; deformability;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim and Y. W. Chang, Met. Mater. Int., 20, 27 (2014).   DOI
2 J. K. Hwang, I. H. Son, J. Y. Yoo, A. Zargaran and N. J. Kim, Met. Mater. Int., 21, 815 (2015).   DOI
3 B. Hwang, J. H. Shim, M. G. Lee, J. Lee, J. H. Jung, B. S. Kim and S. B. Won, Korean J. Met. Mater., 54, 862 (2016).   DOI
4 M. Wang, F. Zhang and Z. Yang, Mater. Des., 114, 102 (2017).   DOI
5 N. Tsuchida, T. Inoue, H. Nakano and T. Okamoto, Mater. Lett., 160, 117 (2015).   DOI
6 G. Miyamoto, Y. Karube and T. Furuhara, Acta Mater., 103, 370 (2016).   DOI
7 J. H. Shim, B. Hwang, M. G. Lee and J. H. Lee, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 62, 67 (2018).   DOI
8 B. Hwnag and C. G. Lee, Mater. Sci. Eng., A, 527, 4341 (2010).   DOI
9 F. B. Pickering and B. Garbarz, Scr. Metall., 21, 249 (1987).   DOI
10 T. Gladman, I. D. Mcivor and F. B. Pickering, J. Iron Steel Inst., 210, 916 (1972).
11 S. W. Seo, H. K. D. H. Bhadeshia and D. W. Suh, Mater. Sci. Technol., 31, 487 (2015).   DOI
12 C. Zener and J. H. Holloman, J. Appl. Phys., 15, 22 (1944).   DOI
13 K. B. Kang, O. Kwon, W. B. Lee and C. G. Park, Scr. Mater., 36, 1303 (1997).   DOI
14 S. S. Hansen, J. B. V. Sande and M. Cohen, Metall. Trans. A, 11, 387 (1980).   DOI
15 B. E. O'Donnelly, R. L. Reuben and T. N. Baker, Met. Technol., 11, 45 (1984).   DOI
16 G. E. Dieter, Mechanical Metallurgy, ed. D. Bacon, McGraw-Hill (1988).
17 S. I. Lee, S. W. Lee, S. G. Lee, S. Lee, H. G. Jung and B. Hwang, Korean J. Met. Mater., 56, 413 (2018).   DOI
18 L. Wang, D. Tang and Y. Song, J. Iron Steel Res. Int., 24, 321 (2017).   DOI
19 M. Calcagnotto and D. Ponge, Metall. Mater. Trans. A, 43, 37 (2012).   DOI
20 A. R. Marder and B. L. Bramfitt, Metall. Mater. Trans. A, 7, 365 (1976).   DOI