Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.8.579

Effects of Oxide Growth on Mechanical Properties Degradation of Zirconium Alloys  

Jeon Sang-hwan (Department of Nuclear Engineering, Hanyang University)
Kim Yong-soo (Department of Nuclear Engineering, Hanyang University)
Publication Information
Korean Journal of Materials Research / v.14, no.8, 2004 , pp. 579-586 More about this Journal
Abstract
A study on the effects of oxide growth on the mechanical properties degradation of pure zirconium and Zircaloy-4 is carried out with high temperature tensile tests. It is found that the mechanical properties can deteriorate with the oxide growth less than $1\%$ of total specimen cross section, especially at $300\~400^{\circ}C$ that is zirconium alloy cladding temperature during the nuclear reactor operation. It is also revealed that Young's modulus changes little but yield strength and tensile strength drop down to $20\% and 40\%$ of the room temperature strength, respectively, in the temperature range. Fractographic analysis shows that the number of dimples decreases and fractured surface becomes smooth with increasing oxide thickness.
Keywords
zirconium alloys; oxidation; mechanical properties degradation; yield strength; tensile strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. R. Brunstetter, H. P. Kling and B. H. Alexander, The Tensile Properties of Zirconium at Elevated Temperatures, p. 5, NYO-1126, United States Atomic Energy Commission, USA (1950)
2 C. R. Simcoe and W. L. Mudge, Jr. Tensile Properties of Zirconium and Zirconium Alloys, p. 8, AECD-3680, United States Atomic Energy Commission, USA (1951)
3 IAEA Co-ordinated Research Project on Establishment of a Thermo-physical Properties Data Base of Light Water Reactors and Heavy Water Reactors, IAEA-RC-734.3, Austria (2003)
4 B. Kanashov, Fuel Failure in Water Reactors: Causes and Mitigation, IAEA-TECDOC-1345, Slovakia (2002)
5 P. D. Parsons, E. D. Hindle and C. A. Mann, PWR Fuel Behaviour in Design Basis Accident Conditions, CSNI Report 129, OECD Nuclear Energy Agency (1986)
6 A. Sawatzky, Zirconium in Nuclear Industry, ASTM STP, 681, 479 (1979)
7 MATPRO - A Labrary of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, Idaho National Engineering Laboratory, USA (1993)
8 G. Dressler, K. Drefahl, H. Matuda and P. Wincierz, Zirconium in Nuclear Applictions, ASTM STP, 551, 92 (1974)
9 David. Baty, W. A. Pavinch, M. R. Dietrich, G. S. Clevinger and T. P Papazoglou, Zirconium in the Nuclear Industry ASTM STP, 824, 306 (1982)
10 USNRC Standard Review Plan, NUREG-75/087, Washington (1996)
11 Y. Etoh, S. Shimada, R. B. Adamson, T. Yasuda, T. Kogai and Y. Ishii, Proc. Intern. Topical Meeting on LWR Fuel Performance (Portland, Oregon, USA, March 1997). ed. Chad L. Painter (American Nuclear Society, Illinois, USA, 1997) p. 211
12 B. C. Cheng, J. M. Brown, K. G. Turnage, E. A. Armstrong and M. Hudson, Proc. Intern. Topical Meeting on LWR Fuel Performance (Portland, Oregon, USA, March 1997). ed. Chad L. Painter (American Nuclear Society, Illinois, USA, 1997) p. 379
13 A. B. Johnson, Jr., Zirconium Alloy Oxidation and Hydriding Under Irradiation: Review of Pacific Northwest Laboratories' Test Program Results, EPRI NP-5132, Battelle, Pacific Northwest Laboratories, USA (1987)
14 J. H. Schemel, Zirconium Alloy Fuel Clad Tubing Engineering Guide, p.85, Sandvik Special Metals Corporation, Washington (1989)
15 R. Yang, O. Ozer and H. S. Rosenbaum, Proc. Intern. Topical Meeting on LWR Fuel Performance (Park city, Utah, USA, April 2000). ed. Rosa Yang (American Nuclear Society, Illinois, USA, 1997)
16 S. R. Pati, P. Jourdain, G. P. Smith and A. M. Garde, Proc. Intern. Topical Meeting on LWR Fuel Performance (Portland, Oregon, USA, March 1997). ed. Chad L. Painter (American Nuclear Society, Illinois, USA, 1997) p. 413