DOI QR코드

DOI QR Code

Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point

항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구

  • 윤승채 (현대하이스코 기술연구소) ;
  • 문만빈 (현대하이스코 기술연구소) ;
  • 김형섭 (포항공과대학교 신소재공학부)
  • Received : 2010.01.26
  • Published : 2010.07.22

Abstract

Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

Keywords

References

  1. F. A. Khalid, Mater. Sci. Eng. A 325, 281 (2002). https://doi.org/10.1016/S0921-5093(01)01471-X
  2. E. Bayraktar, N. Isac, and G. Arnold, J. Mater. Pro. Tech. 162-163, 471 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.059
  3. O. Bouaziz and N. Guelton, Mater. Sci. Eng. A 391, 246 (2001).
  4. S. Vercammen, B. Blanpain, B. C. De Cooman, and P. Wollants, Acta Mater. 52, 2005 (2004). https://doi.org/10.1016/j.actamat.2003.12.040
  5. J. D. Yoo, S. W. Hwang, and K. T. Park, Mater. Sci. Eng. A 508, 234 (2009). https://doi.org/10.1016/j.msea.2008.12.055
  6. A. S. Hamada, L. P. Karjalainen, and M. C. Somani, Mater. Sci. Eng. A 467, 114 (2007). https://doi.org/10.1016/j.msea.2007.02.074
  7. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000). https://doi.org/10.1016/S0921-5093(99)00653-X
  8. J. Stearns, T. S. Srivatsan, A. Prakash, and P. C. Lam, Mater. Sci. Eng. A 366, 262 (2004). https://doi.org/10.1016/j.msea.2003.08.017
  9. R. Mendoza, M. Alanis, O. Alvarez-Fregoso, and J. A. Juarez-Islas, Scr. Mater. 43, 771 (2000). https://doi.org/10.1016/S1359-6462(00)00486-3
  10. I. D. Choi, D. M. Kim, D. M. Bruce, D. K. Matlock, J. G. Speer, and S. H. Park, J. Kor. Inst. Met. & Mater. 43, 263 (2005).
  11. S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, Scr. Mater. 51, 303 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.031
  12. A. K. De, S. Vandeputte, and B. C. De Cooman, Scr. Mater. 41, 831 (1999). https://doi.org/10.1016/S1359-6462(99)00232-8
  13. S. C. Yoon, M. H. Seo, and H. S. Kim, Scr. Mater. 55, 159 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.046
  14. S. C. Baik, Y. Estrin, H. S. Kim, and R. J. Hellming, Mater. Sci. Eng. A 351, 86 (2003). https://doi.org/10.1016/S0921-5093(02)00847-X
  15. Y. Estrin and H. Mecking, Acta Metall. 32, 57 (1984). https://doi.org/10.1016/0001-6160(84)90202-5
  16. P. S. Follansbee and U. F. Kock, Acta Metall. 36, 81 (1988). https://doi.org/10.1016/0001-6160(88)90030-2
  17. S. C. Baik, Y. Estrin, H. S. Kim, R. Hellmig, and H-T. Jeong, Mater. Sci. Forum 408-412, 697 (2002). https://doi.org/10.4028/www.scientific.net/MSF.408-412.697
  18. S. C. Baik, Y. Estrin, R. J. Hellmig, H. T. Jeong, H.-G. Brokmeier, and H. S. Kim, Zeit. Metallkd. 94, 1189 (2003). https://doi.org/10.3139/146.031189
  19. A. Usnishi and C. Teodosiu, Inter. J. Plasticity 20, 915 (2004). https://doi.org/10.1016/j.ijplas.2003.06.004
  20. H. S. Kim, C. Suryanarayana, S.-J. Kim, and B. S. Chun, Powder Metall. 41, 217 (1998). https://doi.org/10.1179/pom.1998.41.3.217
  21. Y. M. Kim, S. K. Kim, Y. J. Kim, and N. J. Kim, ISIJ Int. 42, 1571 (2002). https://doi.org/10.2355/isijinternational.42.1571
  22. B. Kato, ISIJ Int. 30, 1003 (1990). https://doi.org/10.2355/isijinternational.30.1003
  23. Y. M. Kim, S. K. Kim, and N. J. Kim, Mater. Sci. Forum 475-479, 289 (2005). https://doi.org/10.4028/www.scientific.net/MSF.475-479.289
  24. N. J. Kim and G. Thomas, Mater. Sci. Tech. 1, 32 (1985). https://doi.org/10.1179/026708385790087082
  25. M. Umemoto, Z. G. Liu, S. Sugimoto, and K. Tsuchiya, Metall. Trans. A 31, 1785 (2000). https://doi.org/10.1007/s11661-006-0249-x
  26. S. K. Kim, Y. M. Kim, Y. J. Lim, and N. J. Kim, Metal. Mater. Int. 12, 131 (2006). https://doi.org/10.1007/BF03027468
  27. N. C. Goel, J. P. Chakravarty, and K. Tangri, Metall. Trans. A 18A, 5 (1987).
  28. H. S. Kim, S. H. Kim, and W. S. Ryu, Mater. Trans. 46, 2159 (2005). https://doi.org/10.2320/matertrans.46.2159
  29. H. S. Kim, J. Kor. Inst. Met. & Mater. 38, 817 (2000).
  30. D. E. Dieter, Mechanical Metallurgy, (1976).
  31. L. Anand and C. Su, Acta Mater. 55, 3735 (2007). https://doi.org/10.1016/j.actamat.2007.02.020
  32. T. Pepelnjak and B. Barisic, J. Mater. Pro. Tech. 186, 111 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.025
  33. G. S. Kim, S. C. Baik, and O. J. Kwan, J. Kor. Inst. Met. & Mater. 36, 1939 (1998).
  34. A. G. Mamalis, A. P. Karafillis, and N. M. Vaxevanidis, J. Mater. Pro. Tech. 25, 15 (1991). https://doi.org/10.1016/0924-0136(91)90100-S