• Title/Summary/Keyword: Temporal data

Search Result 2,895, Processing Time 0.033 seconds

A Design and Implementation of a Two-Way Synchronization System of Spatio-Temporal Data Supporting Field Update in Mobile Environment (모바일 환경에서 필드 업데이트를 지원하는 시공간 데이터의 양방향 동기화 시스템의 설계 및 구현)

  • Kim, Hong-Ki;Kim, Dong-Hyun;Cho, Dae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.909-916
    • /
    • 2010
  • In ubiquitous GIS services is possible to use the spatio-temporal data using a mobile device at anytime. Also, client is transmitted latest spatio-temporal data from server. But traditional systems have a problem that the time of transmitting latest information from server to client takes long time because of collecting data periodically. In this paper, we proposed Two-way Synchronization system supporting field update to solve the existing problem. This system uses mobile device for collecting changed data in the real world and sending collected data to server.

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

Application of Hidden Markov Chain Model to identify temporal distribution of sub-daily rainfall in South Korea

  • Chandrasekara, S.S.K;Kim, Yong-Tak;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.499-499
    • /
    • 2018
  • Hydro-meteorological extremes are trivial in these days. Therefore, it is important to identify extreme hydrological events in advance to mitigate the damage due to the extreme events. In this context, exploring temporal distribution of sub-daily extreme rainfall at multiple rain gauges would informative to identify different states to describe severity of the disaster. This study proposehidden Markov chain model (HMM) based rainfall analysis tool to understand the temporal sub-daily rainfall patterns over South Korea. Hourly and daily rainfall data between 1961 and 2017 for 92 stations were used for the study. HMM was applied to daily rainfall series to identify an observed hidden state associated with rainfall frequency and intensity, and further utilized the estimated hidden states to derive a temporal distribution of daily extreme rainfall. Transition between states over time was clearly identified, because HMM obviously identifies the temporal dependence in the daily rainfall states. The proposed HMM was very useful tool to derive the temporal attributes of the daily rainfall in South Korea. Further, daily rainfall series were disaggregated into sub-daily rainfall sequences based on the temporal distribution of hourly rainfall data.

  • PDF

Temporal and spatial outlier detection in wireless sensor networks

  • Nguyen, Hoc Thai;Thai, Nguyen Huu
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.437-451
    • /
    • 2019
  • Outlier detection techniques play an important role in enhancing the reliability of data communication in wireless sensor networks (WSNs). Considering the importance of outlier detection in WSNs, many outlier detection techniques have been proposed. Unfortunately, most of these techniques still have some potential limitations, that is, (a) high rate of false positives, (b) high time complexity, and (c) failure to detect outliers online. Moreover, these approaches mainly focus on either temporal outliers or spatial outliers. Therefore, this paper aims to introduce novel algorithms that successfully detect both temporal outliers and spatial outliers. Our contributions are twofold: (i) modifying the Hampel Identifier (HI) algorithm to achieve high accuracy identification rate in temporal outlier detection, (ii) combining the Gaussian process (GP) model and graph-based outlier detection technique to improve the performance of the algorithm in spatial outlier detection. The results demonstrate that our techniques outperform the state-of-the-art methods in terms of accuracy and work well with various data types.

Selectivity Estimation for Spatio-Temporal a Overlap Join (시공간 겹침 조인 연산을 위한 선택도 추정 기법)

  • Lee, Myoung-Sul;Lee, Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.54-66
    • /
    • 2008
  • A spatio-temporal join is an expensive operation that is commonly used in spatio-temporal database systems. In order to generate an efficient query plan for the queries involving spatio-temporal join operations, it is crucial to estimate accurate selectivity for the join operations. Given two dataset $S_1,\;S_2$ of discrete data and a timestamp $t_q$, a spatio-temporal join retrieves all pairs of objects that are intersected each other at $t_q$. The selectivity of the join operation equals the number of retrieved pairs divided by the cardinality of the Cartesian product $S_1{\times}S_2$. In this paper, we propose aspatio-temporal histogram to estimate selectivity of spatio-temporal join by extending existing geometric histogram. By using a wide spectrum of both uniform dataset and skewed dataset, it is shown that our proposed method, called Spatio-Temporal Histogram, can accurately estimate the selectivity of spatio-temporal join. Our contributions can be summarized as follows: First, the selectivity estimation of spatio-temporal join for discrete data has been first attempted. Second, we propose an efficient maintenance method that reconstructs histograms using compression of spatial statistical information during the lifespan of discrete data.

Forecasting COVID-19 confirmed cases in South Korea using Spatio-Temporal Graph Neural Networks

  • Ngoc, Kien Mai;Lee, Minho
    • International Journal of Contents
    • /
    • v.17 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.

Design and Implementation of Event Hierarchy through Extended Spatio-Temporal Complex Event Processing (시공간 복합 이벤트 처리의 확장을 통한 계층적 이벤트 설계 및 구현)

  • Park, Ye Jin;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.549-557
    • /
    • 2012
  • Spatial phenomena such as environment pollution, disease and the risk of spreading information need a rapid initial response to perceive spread event. Moving data perceive spread event through real-time processing and analysis. To process and analysis the event, spatial-temporal complex event processing is used. Previous spatialtemporal complex event processing is possible basis spatial operator but insufficient apply to design spatialtemporal complex event processing to perceive spatial phenomena of high complexity. This study proposed hierarchical spatio-temporal CEP design which will efficiently manage the fast growing incoming sensor data. The implementation of the proposed design is evaluated with GPS location data of moving vehicles which are used as the incoming data stream for identifying spatial events. The spatial component of existing CEP software engine has been extended during the implementation phase to broaden the capabilities of processing spatio-temporal events.

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

Study about Real-time Total Monitoring Technique for Various Kinds of Multi Weather Radar Data (이기종-다중 기상레이더 자료의 실시간 통합 모니터링 기법 연구)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lim, Sanghun;Lee, Dong-Ryul;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.689-705
    • /
    • 2016
  • This paper proposed an realtime total monitoring platform for various kind of multi weather radars to analyze and predict weather phenomenons and prevent meteorological disasters. Our platform is designed to process each weather radar data on each radar site to minimize overloads from conversion and transmission of large volumed radar data, and to set observers up the definitive radar data via public framework server separately. By proposed method, weather radar data having different spatial or temporal resolutions can be automatically synchronized with there own spatio-temporal domains on public GIS platform having only one spatio-temporal criterion. Simulation result shows that our method facilitates the realtime weather monitoring from weather radars having various spatio-temporal resolutions without other data synchronization or assimilation processes. Moreover, since this platform doesn't require some additional computer equipments or high-technical mechanisms it has economic efficiency for it's systemic constructions.

Modeling temporal cadastre for land information management

  • Liou, Jae-Ik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.17-28
    • /
    • 2002
  • Time is regarded as an essential feature of land information enabling to track historical landmarks of land uses, ownerships, and taxations based on cadastral maps. Object-oriented temporal modeling helps to simulate and imitate time-varying cadastral data in a chronological and persistent manner. The aim of study is to analyze the role of temporal cadastre tracing footprints of foregoing events in response to various needs and demands associated with historical information of cadastral transactions. In this paper, temporal cadastral object model (TCOM) is proposed to delineate object version history. As an evidence of a new approach and conceptual idea for the importance of temporal cadastre, a part of spatio-temporal processes is illustrated to explain major changes of cadastral map. The feasibility and application of the approach is confirmed by proof-of-concept of temporal cadastre in land information management.

  • PDF