DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-
TREE

Long Jin, Yongmi Lee, Sungbo Seo, Keun Ho Ryu

Dept. of Computer Science, Chungbuk National University
12, Gaesin-dong, Heungdeok-gu, Chungbuk 361-763, Korea
{kimlyong, ymlee, sbseo, khryu}@dblab.chungbuk.ac.kr

ABSTRACT:

Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been
studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-
and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or
long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with
their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set
generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent
Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum
size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions
using FP-trees. (3) We only have the FP-trees of 1-star pattern and other star pattern nodes only link them step by step
for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable
for mining, and is about an order of magnitude faster than the Apriori algonthm and also faster than calendar based on

temporal frequent pattern mining methods.

KEY WORDS: Knowledge discovery, Temporal data Mining, Association rule

1. INTRODUCTION

Data mining technique has already been an important
research area in computer science. There are many
organizations developing in these areas. One of the most
popular techniques is the association rule mining (ARM),
which is the automatic discovery of pairs of element sets
that tend to appear together in a common context.

Time is an important aspect of all real world
phenomena. Any systems, approaches or techniques that
are concerned with information need to take into account
the temporal aspect of data. Temporal data are now being
viewed as invaluable assets from which hidden
knowledge can be derived, so as to help understand the
past and plan for the future [1, 2]. Calendar association
rules has been defined by combining the association rules
with temporal features which represented by calendar
time expression [3]. In this paper, for solving out the
mining problem of temporal association rules, a
framework for temporal data mining has been proposed.
Also, this paper suggested a SQL-like mining language
and shows architecture. However, the proposed method is
Jjust one kind of temporal pattern. According to [4] logic
the technique first search the association ship than it is
used to incorporate temporal semantics. It can be used in
point based & interval based model of time
simultaneously [4]. In calendar based on temporal
association rules [5], proposed the discovery of
association rules along with their temporal patterns in
terms of calendar schemas and identified two classes of

rules, precise match and fuzzy match, to represent regular
association rules along with their temporal patterns. An
important feature of this paper representation mechanism
is that the corresponding data mining problem requires
less prior knowledge than the prior methods. A Frequent
pattern approach for mining the time sensitive data was
introduced in [6]. Here the pattern frequency history
under a tilted-time window framework in order to answer
time-sensitive queries. A collection of item patterns along
with their frequency histories are compressed and stored
using a tree structure similar to FP-tree and updated
incrementally with incoming transactions {6). This
approach is also adopt an Apriori-like candidate set
generation.

In this paper, we propose an efficient temporal
frequent pattern mining using TFP-tree (Temporal
Frequent Pattern tree). This approach has three
advantages. First, this method separates many partitions
by according to maximum size domain and only scans the
transaction once for reducing the I/O cost. Second, this

"method maintains the all transactions using FP-trees.

Third, we only have the FP-trees of 1-star pattern and
other star pattern nodes only link them step by step for
efficient mining and the saving memory.

The remaining of the paper is organized as follows.
Section 2 introduces the TFP-tree structure and its
construction method. Section 3 develops a TFP-tree-
based frequent pattern mining algorithm, TFP-tree
Mining. Section 4 presents our performance study.
Section 5 summarizes our study.

-454-



2. FREQUENT PATTERN TREE: DESIGN AND
CONSTRUCTION

Let I={a,,a;, ...,an} be a set of items, and a transaction
database DB=<T),T5,...,T>>, where T,(i € []..n]) is a
transaction which contains a set of items in /. The support
(or occurrence frequency) of a pattern 4, which is a set of
items, is the number of transactions containing 4 in DB.
A, is a frequent pattern if 4’s support is no less than a
predefined minimum support threshold, ¢.

Given a transaction database DB and a minimum
support threshold, ¢, the problem of finding the complete
set of frequent patterns is called the frequent pattern
mining problem.

A calendar schema is a relational schema (in the sense
of relational databases) R=(f,:Dufn.;:Dp.1,...f1:D;)
together with a valid constraint (explained below). Each
attribute f£; is a calendar unit name like year, month, and
week etc. Each domain D; is a finite subset of the positive
integers. The constraint valid is a Boolean function on
DxD,.;x'-xD, specifying which combinations of the
values in D,x --xD; are “valid”.

2.1 Frequent Pattern Tree

To design a compact data structure for efficient
temporal frequent pattern mining, we define TFP-tree as
follows.

Definition 1 (TFP-tree) A temporal frequent pattern tree
(or TFP-tree in short) is a tree structure defined below.

1. It consists of one root labelled as “null”, an array of
inner node link point /ink_list{n], and a all start node
link point n-link.

2. It has an all star node that consists of one /abel, an
inner node link point child, an inner frequent pattern

link point list link, and a frequent pattern list"

Sregnt_list.

3. The fields of inner node are one label, a child, and
inner pattern link list /ist_{ink. And inner pattern is a
set of a pattern name pattern_name, an inner_pattern
link list pattern_list, and a freqnt_list.

4. The leaf node consists of one /abel and transaction
pattern link list Jisz_link. And transaction pattern is a
set of a pattern_name, a transaction list tran_list, a
FP-tree FP_T, and a fregnt_list.

2.2 Construction of Frequent Pattern Tree

Based on definition 1, we have the following TFP-tree
construction algorithm.

Algorithm 1 (TFP-tree construction)

Input: A transaction database DB and calendar schema R.
Output: Its frequent pattern tree, TFP-tree
Method: The FP-tree is constructed in the following steps.

1. Select maximum size domain o from the calendar schema R.
2. Sort and scan the transaction database DB according to d.
3. Create the root of a TFP tree 7, and label it as “null.” T has
n of link points /ink_list/n] and a n-link point n-link.
4. Create a parameter max_domain and initialize 1;
For each transaction 7Trans in DB do {
Filter the maximum domain schema tem max from the
basic time ¢, of Trans.
If max_domain is equal to fem_max then
insert_tree(Trans,T);
Else
refresh_tree(max_domain,T),
max_domain = tem_max;
insert_tree(Trans,T),

)

Scanning the transaction, we sort the transaction
according of maximum size domain. Because of this
reason is that firstly we can separate many partitions and
secondly save memory.

The procedure of insert_tree(Trans,T) is a function
that insert each transactions into the transaction list of the
containing the basic time in leaf node.

insert_tree(Trans, T) {
1. If T is not any child Then {
initial_tree(T),
}
2. Filter basic time ¢, from 7rans.
3. Insert Trans into T as follows.
For each 1-star pattern node N in T do {
If the star pattern list /is_likt in N does not contain the e,
then - '
Create a trans_pattern femp_list that contains the e, and
label temp _list pattern_name.
Insert the Trans into temp_list.tran_list.
list_link link temp_list.
If 2-star pattern of this parent node does not already
contain temp_list, then
temp list be linked to pattern_list of the contained
2-star pattern. .
Else
Create the 2-star pattern list and link the temp _list.
Like this, until all star pattern list contain pattern list
step by step.
Else
Select the trans_pattern temp_list that contains ey.
Insert the Trans into temp_list.tran_list.

The procedure of refresh_tree(max_domain,T) is a
function of creating FP-tree that the transaction pattern
lists contain the containing max_domain at leaf nodes.

-455-



refresh_tree(max_domain,T) {
//Create the FP-tree.
For each 1-star pattern node N in T do {
If the star pattern N.list_link pattern _name contains the
maximum domain schema max_domain then
Create the root of an FP-tree, FP_ T, and label it as
“null.”
Scan the transaction N./ist_link.tran_list once.
Collect the set of frequent items F and their supports.
Sort F' in support descending order as L, the list of
frequent items.
For each transaction 7rans in N.list_link.tran_list do
Select and sort the frequent items in 7rans according
to the order of L.
Let the sorted frequent item list in 7rans be [p|P],
where p is the first element and P is the remaining
list.
Call FP_insert tree([p|P}; FP_T);
N.ist_link FP_Tlink FP_T,
Delete N.list_link.tran_list.
}
}

The procedure of FP-insert tree([p|P]; T) is the
creating FP-tree function every transaction list at
transaction pattern.

FP_insert tree([pP}; T) {

If T has a child N such that N.item-name= p.item-name, then

increment N’s count by 1;

Else C
Create a new node ¥, and let its count be 1, its parent link
be linked to 7, and its node-link be linked to the nodes
with the same item-name via the node-link structure.

If P is nonempty then
Call FP_insert tree(P,N)

The procedure of initial_tree(T) is a function that
creates all of nodes (all star node, inner node, and leaf
node) and link them.

initial_tree(T) {
Create a all_star_node node a, and label it as “<0,0,....0,0>.
T.n-link link a.
Create a parameter of inner_node point temp_point;
For eachiin ndo {
Create n of inner_node nodes tmp_node, and label them.
T.link_list{i]=tmp_node; "
temp_point=tmp_node;
For eachj in n-2 do {
Create n of inner_node nodes tmp_node, and label them.
temp_point.child = tmp_node.
temp_point = tmp_node;
}
Create n of leaf_node nodes tmp_node, and label them.
temp_point.child = tmp_node;

}

3. MINING FREQUENT PATTERNS USING TFP-
TREE

Construction of a compact TFP-tree can be performed
with a rather compact data structure. However, this does
not generate the frequent patterns. In this section, we will
study how to explore the compact information stored in a
TFP-tree and develop an efficient mining method for
mining the complete set of frequent pattemns.

Based on the above section, we have the following
algorithm for mining frequent patterns using TFP-tree.

Algorithm 2 (TFP-tree Mining)

Input: TFP-tree 7, a minimum support threshold ¢.
Output: The complete set of frequent patterns.
Method: Call FP-growth (FP-tree, null).

For each (n-1)-star pattern node N in T.link_list do {
generate_pattern(N,e),
}

The procedure of generate_pattern(N,c) explore the
TFP-tree until reach to the leaf node. From leaf node, this
algorithm is mining the frequent patterns, call FP-
growth(Tree,a), and next mining the frequent patterns,
call generate_star_pattern(list,c), at inner node step by
step.

generate_pattern(N,¢) {
If N is not the leaf node then
Create a parameter of inner node m and m=N.child,
generate_pattern(m,e);
For each temp _list in N.list_link do {
generate_star_pattern(temp_list,c);
}

Else .
For each trans_pattern list list in N.list_link do {
list freqnt_list = FP-growth(list. FP_T, null)
}
}

generate_star_pattern(list,e) {
Create a  parameter of
FP_list;//{freqnt_ptn,count}
For each temp FTP in list.pattern_list do {
For each temp_pattern in temp_FTP do {
If FP_list contains temp_pattern then
FP_list.count += temp_pattern.count;
Else
Insert temp_pattern into FP_list,
}

}
For each temp in FP_list do {

If the temp.count is smaller than ¢ then
Delete temp from FP_list;

frequent pattem list

}
list freqnt_list = FP_list;
list. pattern_list is null.

}

-456-



FP-growth(Tree,a)

If Tree contains a single path P then
For each combination (denoted as ) of the nodes in the
path P do
Generate pattern fUa with support = minimum support
of nodes in f;
Else
For each ai in the header of Tree do {
Generate pattern § = a;Ua with support = a;.support;
Construct B 's conditional pattern base and then f's
conditional FP-tree Treeg;
If Treeg #0 then
call FP-growth(Treeg,f);

4. EXPERIMENTAL RESULT AND
EVALUATION

We conduct all the experiments on a Windows 2000
Server desktop with Pentium PC 2.8GHz and 512 Mbytes
of main memory. Also, we use JDK 1.4, MS-SQL 2000
database and JDBC driver for connecting MS-SQL 2000.
We choose the clicks data file in the KDD Cup 2000 data
sets to perform our experiments. The clicks data file
consists of homepage request records, each of which
contains attribute values describing the request and the
person who sent the request. We consider each request
record as a transaction. The requests recorded in the
clicks data file are from January 30, 2000 to March 31,
2000, which cover 8 weeks plus 6 days.

Execution time (sec)

2 15 1 0.75 05 033 025
Minimum support (%)

Figure 1 Execution time of three algorithms versus
minimum support.

In our experiments, we compare three algorithms:
nontemporal association match (NTA match), calendar
temporal association match (CTA match), and temporal
frequent pattern match (TFP match).

Figure 1 shows the execution time of three algorithms
versus minimum support. It also shows our proposed TFP
match method performances more efficient than other
two algorithms.

5. CONCLUSIONS

Association rules mining is a hot-spot in data mining
area. Recent years, there are many research works about
association rules mining.

We have proposed a novel data structure, temporal
frequent pattern tree (TFP-tree), for storing compressed,
crucial information about temporal frequent patterns, and
developed a pattern growth method, TFP-tree mining, for
efficient mining of frequent patterns in large databases.
There are several advantages of TFP-tree over other
approaches: (1) this method separates many partitions by
according to maximum size domain and only scans the
transaction once for reducing the /O cost, (2) this
method maintains the all transactions using FP-trees, (3)
we only have the FP-trees of 1-star pattern and other star
pattern nodes only link them step by step for efficient
mining and the saving memory.

Our performance study shows that the TFP-tree is
efficient and scalable for mining, and is about an order of
magnitude faster than the Apriori algorithm and also
faster than calendar based on temporal frequent pattern
mining methods.

Acknowledgement. This work was partially supported
by ETRI (Telematics & USN Research Division) in
Korea.

References:

[11 J.F. Roddick and M. Spiliopoulou.: Temporal data mining :
survey and issues, Research Report ACRC-99-007, University
of South Australia, 1999.

[2] Y. J. Lee, S. B. Seo and K. H. Ryu.: Discovering Temporal
Relation Rules form Temporal Interval Data, Korea Information
Science Society (KISS), 2001.

[3] X. Chen and 1. Petrounias.: A Framework for Temporal
Data Mining, In Proc. of the 9th International Conference on
Database and Expert Systems Applications, 1998.

{4] Chris P. Rainsford, John F. Roddick R: Adding Temporal
semantics to association rule, 3rd International conference KSS
Springer 1999.

[5] Y. Li and P. Ning.: Discovering Calendar-based Temporal
Association Rules, In Proc. of the 8th International Symposium
on Temporal Representation and Reasoning, 2001.

[6] Chris Giannella , Jiawei Hany, Jian Peiz, Xifeng Yany,
Philip S. Yu R: Mining Frequent Patterns in Data Streams at
Multiple TimeGranularities, H. Kargupta, A. Joshi, K.
Sivakumar, and Y. Yesha (eds.), Next Generation Data Mining,
2003.

[7] Sungbo Seo, Long Jin, Jun Wook Lee, Keun Ho Ryu,
Similarity Pattern Discovery using Calendar Concept Hierarchy
in Time Series Data, Asia Pacific Web Conference (APWeb),
2004.

-457-



